+34 620 10 75 37info@nanbiosis.com

Services

Services

U13-S08. Atomic Force Microscopy indentation test

Atomic Force Microscopy indentation test

Atomic Force Microscopy can be used to measure the forces between the probe and the sample as a function of their mutual separation. This can be applied to perform force spectroscopy.

Customer benefits

Low forces on cells (nano-scale).

Target customer

Public and private research groups focused on mechanobiology

Additional information

Cantilever + cells
Force curve
Capsules
AFM Software
Read More

U10-S9.

Characterization and development of pulmonar formulations

Encapsulation of therapeutic actives of interest in formulations for pulmonary administration with possibility of lyophilisation to obtain a powder. The service has two cutting-edge equipments for the characterization of pulmonary formulations:
SprayTec laser diffraction system: allows the measurement of spray particle and spray droplet size distributions in real-time for more efficient product development of sprays and aerosols, with robust and reproducible droplet size data.
Next Generation Impactor: has been designed specifically for the pharmaceutical industry for testing metered-dose inhalers, drypowder inhalers, nebulizers and nasal sprays. It consists of a high performance cascade impactor for classifying aerosol particles into micrometer size fractions, providing relevant information about their distribution in the respiratory tract.

Customer benefits

The formulations can be characterized, following SOPs, in terms of particle size, polydisperstity index and zeta potential. Importantly, this service can also offer real-time droplet size distribution and aerosol particles classification analysis by means of SprayTec and Next Generation Impactor (NGI) technology.

Target customer

  • Preclinical use for the characterization of the pulmonary formulation prior to its implementation in in vivo models.
  • Companies interested in characterizing their formulations or their pulmonary administration systems.

References

Moreno-Sastre M, Pastor M, Esquisabel A, Sans E, Viñas M, Fleischer A, Palomino E, Bachiller D, Pedraz JL. Pulmonary delivery of tobramycin-loaded nanostructured lipid carriers for Pseudomonas aeruginosa infections associated with cystic fibrosis. Int J Pharm. 2016 Feb 10;498(1-2):263-73. doi: 10.1016/j.ijpharm.2015.12.028.

Additional information

U10 Pulmonar formulations characterization.tif

Read More

U10-S8.

3D bio-impression of scaffolding for regenerative medicine

The principle of 3D bioprinting consists of selecting the most suitable biomaterials and cell types to prepare a Bioink that should be able to promote cell growth and differentiation and present appropriate mechanical properties of the target tissue.
This service possess a wide variety of 3D bioprinting techniques avaliable, such as extrusion, droplet, electrospining, electrowritting and stereolithography.

Customer benefits

One of the main characteristics of this additive manufacturing technique is its ability to bioprint the desired layers, with specific cell orientation , and desired morphology of the bioprinted 3D scaffold in order to ressemble, as much as possible, the tissue of interest. To achieve this goal, rheology, texturometry, printability and biological assays are carried out.

On the one hand, this technology can be employed to develop 3D scaffolds specific for the regeneration of particular tissues. On the other hand, this strategy offers a 3D environment that mimics the tissue/ organ of interest in order to test potential therapeutic tools, which goes in accordance with the implementation of the 3R principle (replace, reduce and refine).

Target customer

  • Preclinical use for in vitro and in vivo models.
  • Pharmaceutical industry (e.g. cosmetics)

References

  • Lafuente-Merchan M, Ruiz-Alonso S, García-Villén F, Zabala A, de Retana AMO, Gallego I, Saenz-Del-Burgo L, Pedraz JL. 3D Bioprinted Hydroxyapatite or Graphene Oxide Containing Nanocellulose-Based Scaffolds for Bone Regeneration. Macromol Biosci. 2022 Nov;22(11):e2200236. doi: 10.1002/mabi.202200236.
  • Lafuente-Merchan M, Ruiz-Alonso S, Zabala A, Gálvez-Martín P, Marchal JA, Vázquez-Lasa B, Gallego I, Saenz-Del-Burgo L, Pedraz JL. Chondroitin and Dermatan Sulfate Bioinks for 3D Bioprinting and Cartilage Regeneration. Macromol Biosci. 2022 Mar;22(3):e2100435. doi: 10.1002/mabi.202100435.
  • Ruiz-Alonso S, Villate-Beitia I, Gallego I, Lafuente-Merchan M, Puras G, Saenz-Del-Burgo L, Pedraz JL. Current Insights Into 3D Bioprinting: An Advanced Approach for Eye Tissue Regeneration. Pharmaceutics. 2021 Feb 26;13(3):308. doi: 10.3390/pharmaceutics13030308.

Additional information

U10 Biorpinters.png 3D Bioprinters: BIO X 3D Bioprinter –CELLINK (left); R-GEN 100 –REGENHU (right).

https://www.nanbiosis.es/wp-content/uploads/2017/10/piel.jpg Bioprinted 3D scaffold

Read More

U9-S06. Consultancy

Consultancy

The unit can provide advice about the most suitable synthesis method to obtain nanoparticles and/or the most convenient characterization techniques according to the customers´ needs

Customer benefits

The customer will benefit from the experience of the facility to help and guide in the selection of the most suitable synthesis approach depending on the customer´s needs.

Target customer

Material suppliers, pharma industry, research laboratories and research groups with interests in biomedicine, nanotoxicology, drug delivery, development of new materials for catalysis, encapsulation, delivery.

Related projects

  1. Laser Pyrolysis For The Development Of Inorganic Nanoparticles –10/2017 – 09/2018. Funding Entity: TEIJIN LIMITED.
  2. Desarrollo de fibras, polímeros y cerámicas con propiedades foto-catalíticas intrínsecas. 23/11/2021-23/11/2024. Funding Entity: NUREL, S.A.
  3. Investigación y desarrollo de nuevas metodologías de análisis estructural de papel reciclado y su aplicación a la optimización de papeles. 01/09/2021-31/08/2023. Funding Entity: S.A. INDUSTRIAS CELULOSA ARAGONESA
  4. Preparación Y Caracterización De Superficies Filtrantes Conteniendo Nanopartículas Basadas En Cu En Superficie 09/2020- 11/2020. Funding Entity: VISCOFAN, S.A. PI: Jesús Santamaría
Read More

U8-S04. Graphene growth services (On-site&Remote) OUTSTANDING

Graphene growth services (On-site&Remote) OUTSTANDING

CVD graphene growth on copper foils and transfer of CVD graphene to rigid/flexible substrates.

Customer benefits

Adaptable platform for electrical characterization of microelectrodes to meet customer needs

Target customer

Research groups and SMEs

References

  • Masvidal-Codina E, Illa X et al., Nature Materials 18 (2019) 280-288
  • Bonaccini Calia et al., Nature Nanotechnology 17 (2022) 301-309
  • Brosel-Oliu et al. Small (2023) 2308857
Read More

U7-S11. Contact angle

Contact angle

The Contact angle service of U7 is specialized in the characterization of surface-liquid interactions at the macro-scale. One can measure contact angle of different liquids and determine the surface free energy of different surfaces under investigation, as well as the wettability properties of different surfaces or different coatings.

Customer benefits

Our Contact angle service benefits from being part of a bioengineering-specialized research centre, providing wide knowledge in the treatment of different surfaces to tailor their properties according to the final bio-application. We offer custom services, assuring close and direct interaction with the client, to meet conclusive results and high-quality needs.

Target customer

Our target customers are researchers in the field of bioengineering or R&D departments of biotech companies which want to test, characterize, or compare different substrates, materials or prototypes.

Additional information


Contact angle measurement of diiodomethane on silicon wafer.

Read More

U3-S04. Peptide libraries (Remote) OUTSTANDING

Peptide libraries.

Read More

U3-S03. Special amino acids for peptidomimetics synthesis (Remote) OUTSTANDING

Special amino acids for peptidomimetics synthesis (Remote) OUTSTANDING

– Synthesis of N-alkyl amino acids and other special amino acids
– Synthesis of peptoids (N-alkylglycine oligomers).
– Synthesis of β-peptide, γ- peptides, β,γ-peptides and α,β-peptides
– Synthesis of peptidomimetics
– Synthesis of hybrid-heterocycle- peptides

Customer benefits

  • Extensive experience in the synthesis of peptide oligomers from non-natural amino acids such as β-peptides, γ-peptides, β,γ-peptides and α,β-peptides.
  • Experience with peptides and peptide mimetics in solid phase and in solution.
  • Development of various strategies for large-scale production (hundreds of mg) of peptidomimetics.

Target customer

  • Research groups (drug delivery, molecular biology, pharmacology, nanotechnology, biotechnology)
  • Companies (biotech and pharma companies).

References

  • Hybrid cyclobutane/proline-containing peptidomimetics: the conformational constraint influences their cell-penetration ability. Illa, Ona ; Ospina, Jimena; Sanchez-Aparicio, Jose-Emilio; Pulido, Ximena ; Abengozar, Maria Angeles; Gaztelumendi, Nerea; Carbajo, Daniel; Nogues, Carme; Rivas, Luis ; Marechal, Jean-Didier; Royo, Miriam ; Ortuño, Rosa M. International Journal of Molecular Sciences (2021), 22, 5092.
  • Chiral cyclobutane-containing cell-penetrating peptides as selective vectors for anti-Leishmania drug delivery systems. Illa, Ona ; Olivares, Jose-Antonio; Gaztelumendi, Nerea; Martinez-Castro, Laura; Ospina, Jimena; Abengozar, Maria-Angeles; Sciortino, Giuseppe ; Marechal, Jean-Didier; Nogues, Carme; Royo, Miriam; Rivas, Luis; Ortuno, Rosa M. International Journal of Molecular Sciences (2020), 21, 7502.
  • A solid-phase combinatorial approach for indoloquinolizidine-peptides with high affinity at D1 and D2 dopamine receptors. Molero, Anabel; Vendrell, Marc; Bonaventura, Jordi; Zachmann, Julian; Lopez, Laura; Pardo, Leonardo; Lluis, Carme; Cortes, Antoni; Albericio, Fernando; Casado, Vicent; Royo, Miriam. European Journal of Medicinal Chemistry (2015), 97, 173-180.
  • Efficient γ-amino-proline-derived cell penetrating peptide-superparamagnetic iron oxide nanoparticle conjugates via aniline-catalyzed oxime chemistry as bimodal imaging nanoagents. Cavalli, Silvia; Carbajo, Daniel; Acosta, Milena; Lope-Piedrafita, Silvia; Candiota, Ana Paula; Arus, Carles; Royo, Miriam; Albericio, Fernando. Chemical Communications (2012), 48, 5322-5324.

Read More

U26-S03. NMR-HRMAS Metabolomic Studies 14T

Metabolomic Studies

The service is intended for undergoing metabolic studies. Thanks to a 14 T nmr equipment equipped with thermostatic automatic sampler

Customer benefits

The service is integrated in the University of Valencia core facility that ensures the correct maintenance and the offsite service runed by technicians under ISO 9001.

Target customer

The primary audience are clinic groups that require massive metabolic studies for research either in plasma or urine or other biofluids.

Read More

U26-S02. NMR experiments in solid state & micro MRI 9.4T

NMR experiments in solid state

The service is intended for the determination of the structure of insoluble organic compounds, inorganic materials, nanomaterials, Studies of their modifications. Thanks to a 9.4 T solid nmr equipment

Customer benefits

The service is integrated in the University of Valencia core facility that ensures the correct maintenance and the offsite service runed by two technicians under ISO 9001.

Target customer

The primary audience are groups working on materials or nanomaterials, enterprises that require solid nmr to performe quality control.

Read More