+34 620 10 75 37info@nanbiosis.com

JUMISC

JUMISC

Scientific presentation and use of the piezoelectric micromanipulator and the time-lapse incubator within the framework of the Genera Project

Cáceres, 31st January 2023

On the occasion of the training course in Assisted Reproduction that is held today at the CCMIJU facilities, within the Master’s Degree in Advanced Biotechnology (MUBA), organized by the University of Extremadura in collaboration with the CCMIJU, two systems of recent acquisition are handled within the framework of the project “Embryonic Genetics in Assisted Reproduction” (GENERA), co-funded by the European Regional Development Fund (FEDER) within the Spain’s Pluriregional Operational Program for Singular Scientific and Technical Infrastructures (ICTS) 2014-2020 and by the Consejería de Economía, Ciencia y Agenda Digital of the Junta de Extremadura.

The above mentioned systems are a Piezoelectric Micromanipulator that allows the introduction of needles or capillaries into the cells for subsequent microinjection, and a Time-lapse Incubator to regularly observe embryos, perform precise evaluations, and minimize embryonic culture stress. Both are installed in the assisted reproduction laboratory of the CCMIJU and are being used by 10 master’s students to carry out their practices.

The project has an eligible budget of €98,000, of which the ERDF co-financing rate (80%) amounts to 78,400 and the national contribution to €21,600. It is expected to be completed in June  2023.

Read More

New Time-Lapse Incubator for assisted reproduction research

The ICTS NANBIOSIS has expanded its capabilities with the installation and commissioning of a new equipment Time-Lapse Incubator in the CCMIJU’s Assisted Reproduction Lab.

The acquisition of the Time-Lapse Incubator is part of the project “Embryonic Genetics in Assisted Reproduction” (GENERA), co-funded by the European Regional Development Fund (ERDF) within the framework of Spain’s Plurirregional Operational Program for Singular Scientific and Technical Infrastructures (ICTS) 2014 -2020 and by Consejería de Economía, Ciencia y Agenda Cultural of  Junta de Extremadura.

The objective of GENERA includes the purchase of lab equipment to expand services in the field of embryonic genetics as well as creating, editing and making traceability of embryos with high genetic value.

The first lab equipment acquired is the EPPENDORF PiezoXpert Piezoelectric-assisted micromanipulator that supports the creation and possible embryo editing, allowing easy penetration into cells for subsequent microinjection or micromanipulation.

The second one is the Time-Lapse Incubator that enables observation of embryos for accurate assessments and minimizing embryo culture stress.

The purchase of this lab equipment will offer the possibility of developing next-generation embryos, being able to face specific studies of the highest reproductive level and offering studies demanded by companies in the sector.

The project has an eligible budget of €98,000, of which the ERDF co-financing rate (80%) amounts to 78,400 and the national contribution to €21,600. It is expected to be completed in June 2023.

Read More

NANBIOSIS in the new poster of ICTS map published by Spanish Goverment.

ICTS underpins the Spanish reputation for research excellence.

In the picture: the new poster of the ICTS map in which NANBIOSIS facilities have been highlighed

The term Unique Scientific and Technical Infrastructure (ICTS) refers to facilities, resources, or services for the development of top-quality cutting-edge research, as well as the communication, exchange, and preservation of knowledge, the transfer of technology, and promotion of innovation. They are unique or exceptional in their fields, with a high cost of investment, maintenance, and operation, and are of a strategic importance that justifies their availability to all actors in the field of R&D&I. The ICTS share three fundamental characteristics; they are infrastructures with public ownership, unique and open to competitive access.

ICTS offer an opening capacity percentage of their essential services under ‘Competitive Open Access’ for the use by national and international public and private sector researchers, with the support of technical and administrative personnel of the ICTS. Infrastructures access is ruled by a public “Access Protocol” that describes the procedure and criteria for access to the infrastructure. The main features of ‘Competitive Open Access’ are that R + D + i quality of activities developed at the infrastructure should be proven and that requests for access should be prioritized on the basis of objective criteria.

The dissemination of ICTS and their capabilities is essential to provide Spanish and international researchers with access to a large base of quality services and facilities, a basic requirement for the development of excellent science.

The new posster pushised by the General Subdirectorate of Large
Scientific-Technical Facilities of the of the Sapanish Ministry of Science and Research Innovation helps to disseminate and understand the map of ICTS wich are located throughout the country

NANBIOSIS, is one of the five ICTS in the field of Health Sciences and Biotecnology

Read More

The results of POSITION II highlighted by CORDIS: A pan-European alliance for the next generation of smart catheters

In the picture: microencapsulated cardiospheres 10X Captured Brightfield with DM_RGB_Brightfield with DM

The European project POSITION-II has been selected for publication in the ‘Results in Brief’ section of the Community Research and Development Information Service (CORDIS) website. CORDIS is the European Commission’s primary source of results from the projects funded by the EU’s framework programmes for research and innovation (FP1 to Horizon 2020).

The resulting short article has now been published on the CORDIS website in six languages.

The European project POSITION II “A pilot line for the next generation of smart catheters and implants” is an alliance of European leaders, united to improve technology and offer cheaper, easier to use, more efficient and technologically advanced catheters by incorporating sensors and real-time positioning and monitoring systems. This new generation of catheters will improve the treatment of multiple pathologies, through new therapeutic tools such as cell therapy and tissue engineering implemented in the project by the U10 Drug Formulation of the ICTS Nanbiosis, which is integrated in the NanoBioCel group of CIBER-BBN and UPV/EHU.

The following actions have been carried out in NANBIOSIS U10 Drug Formulation during the execution of the project:

– Isolate, expand and characterize cardiosphere-derived cells (CDCs). CDCs were  isolated from porcine cardiac tissue, and their  release profile of immunomodulatory factors was determined.

– To optimize the encapsulation conditions of CDCs in alginate microcapsules.

– Evaluate whether the physical and chemical properties of the encapsulated CDCs were suitable for the catheter developed in the project.

– Determine that the secretion profile of trophic factors did not change in CDCs after encapsulation.

– Provide the TME Lab group and NANBIOSIS U13 of CIBER-BBN and the University of Zaragoza with the microcapsules and encapsulated CDCs required for their mechanical characterization and to evaluate the behavior of the capsules in the catheter and in the animals at the NANBIOSIS units of Center for Minimally Invasive Surgery in Extremadura (CCMIJU). Other collaborations during the execution of the project were established with the Fraunhofer EMFT group in Germany and with the Spanish company IberHospitex, manufacturer of the catheters.

Other related news:

Read More

Results of the POSITION-II Project “A pilot line for the next generation of smart catheters and implants”

Cáceres, October 14th, 2021

POSITION II has received funding within the Electronic Components and Systems for European Leadership Joint Undertaking (ECSEL JU) in collaboration with the European Union’s H2020 Framework Programme (H2020/2014-2020) and National Authorities, under grant agreement Ecsel-783132-Position-II-2017-IA.

It promotes innovation in smart medical instruments and focuses in the next generation of smart catheters and implants by the introduction of open technology platforms for: miniaturization, in-tip AD conversion, wireless communication, MEMS transducer technology and encapsulation. These platforms are open to multiple users and for multiple applications.

POSITION II will enable the further development of the European R&D and manufacturing capability, not only encompassing the micro-fabricated device itself, but also the various value chains that they enable. Finally, by bringing smart catheters into the domain of high volume manufacturing, POSITION II will improve the quality of health-care at manageable cost.

The project, led by Philips Electronics Netherlands B.V, has been developed by 45 partners located in 12 different countries and has finished in September 2021. Within this large collaborative project, the NANBIOSIS units at CCMIJU have been involved in the validation of a novel catheter to administer encapsulated cell therapy to the heart. Also NANBIOSIS U10 Drug Formulation unit of CIBER-BBN and UPV/EHU , has participated being responsible for carrying out the formulation of the cells in hydrogels, for administration through the catheter at the cardiac level, for the regeneration of heart tissue.

The results of the project are available on a video-format documentary that contains short interviews to the consortium partners on their participation. Specifically, CCMIJU has presented its work and results through a short interview to Dr. Verónica Crisóstomo, Coordinator of Cardiovascular Unit. The documentary can be found at https://vimeo.com/604674309/bd8b94050c

Further info about the project here: http://position-2.eu/

Read More

Piezoelectric-assisted micromanipulator for assisted reproduction research

Cáceres, 6/10/2021

Today the provider of a Piezoelectric-assisted micromanipulator installs this device in the CCMIJU’s Assisted Reproduction Lab and provides of specific training for its use.

The acquisition of the micromanipulator is part of the project “Embryonic Genetics in Assisted Reproduction” (GENERA), co-funded by the European Regional Development Fund (ERDF) within the framework of Spain’s Plurirregional Operational Program for Singular Scientific and Technical Infrastructures (ICTS) 2014 -2020 and by Consejería de Economía, Ciencia y Agenda Cultural of  Junta de Extremadura.

The objective of GENERA includes the purchase of three devices to expand services in the field of embryonic genetics as well as creating, editing and making traceability of embryos with high genetic value.

The first equipment acquired is the EPPENDORF PiezoXpert Piezoelectric-assisted micromanipulator that supports the creation and possible embryo editing, allowing easy penetration into cells for subsequent microinjection or micromanipulation.

This acquisition will be completed with two other devices that will offer the possibility of developing next-generation embryos, being able to face specific studies of the highest reproductive level and offering studies demanded by companies in the sector.

The project has an eligible budget of €98,000, of which the ERDF co-financing rate (80%) amounts to 78,400 and the national contribution to €21,600. It is expected to be completed in December 2022.

Read More

Intracoronary Delivery of Porcine Cardiac Progenitor Cells Overexpressing IGF-1 and HGF in a Pig Model of Sub-Acute Myocardial Infarction

Researchers of NANBIOSIS units U14 Cell Therapy unit, U21 Experimental operating rooms and U24Medical Imaging at JUMISC are coauthors of an article recently published by the journal Cells “Intracoronary Delivery of Porcine Cardiac Progenitor Cells Overexpressing IGF-1 and HGF in a Pig Model of Sub-Acute Myocardial Infarction“·

Large animal studies have been carried out by the ICTS ‘NANBIOSIS’, specifically Units 14, 21, 22, and 24 of the JUMISC

Human cardiac progenitor cells (hCPC) are considered a good candidate in cell therapy for ischemic heart disease, demonstrating capacity to improve functional recovery after myocardial infarction (MI), both in small and large preclinical animal models. However, improvements are required in terms of cell engraftment and efficacy. Based on previously published reports, insulin-growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) have demonstrated substantial cardioprotective, repair and regeneration activities, so they are good candidates to be evaluated in large animal model of MI. We have validated porcine cardiac progenitor cells (pCPC) and lentiviral vectors to overexpress IGF-1 (co-expressing eGFP) and HGF (co-expressing mCherry). pCPC were transduced and IGF1-eGFPpos and HGF-mCherrypos populations were purified by cell sorting and further expanded. Overexpression of IGF-1 has a limited impact on pCPC expression profile, whereas results indicated that pCPC-HGF-mCherry cultures could be counter selecting high expresser cells. In addition, pCPC-IGF1-eGFP showed a higher cardiogenic response, evaluated in co-cultures with decellularized extracellular matrix, compared with native pCPC or pCPC-HGF-mCherry. In vivo intracoronary co-administration of pCPC-IGF1-eGFP and pCPC-HFG-mCherry (1:1; 40 × 106/animal), one week after the induction of an MI model in swine, revealed no significant improvement in cardiac function.

Article: Intracoronary Delivery of Porcine Cardiac Progenitor Cells Overexpressing IGF-1 and HGF in a Pig Model of Sub-Acute Myocardial Infarction Cells 202110(10), 2571

Read More

Filtered Air Shower for Animal Housing

Cáceres, September 10th, 2021

In the framework of the project “Updating the Infrastructures and implementation of a LIMS document control and management system to enhance the capacities of the Distributed ICTS NANBIOSIS Units managed by the CCMIJU (AILIMS-NANBIOSIS)  a filtered air shower for Animal Housing has been bought with strictly controlled environmental parameters, to prevent possible cross-contamination and the entry of pathogens and viral particles, since during  entry and exit of personnel to this area, contamination by the mentioned particles has been detected, so the air shower is an effective solution to eliminate them and protect the controlled environment.

AILIMS has been co-funded by the European Regional Development Fund (FEDER) within the framework of the Pluriregional Operational Program of Spain (POPE) of Singular Scientific and Technical Infrastructures (ICTS) 2014-2020 and the acquisition of the shower is part of the first action of the following two, financed with FEDER Funds:

-Within Unit 22 or Animal Facility, the Installation and development of an environmental treatment-control system of the housing rooms, an Improvement and adaptation of the spaces for experimental models, the Acquisition, installation and development of a two-door ultra- filtered air shower and the Acquisition, installation and development of a post-procedural recovery chamber.

– For the rest of the NANBIOSIS Units managed by the CCMIJU, Acquisition, installation and development of a LIMS Software.

The actions and their budget are here detailed: (VI) PROJECT REFERENCE: ICTS-2019-14-46), together with the FEDER co-funded rate.

Read More

Characterization of encapsulated porcine cardiosphere-derived cells for cardiac regeneration.

Researchers of NANBIOSIS U10 Drug Formulation unit of CIBER-BBN and UPV/EHU and NANBIOSIS U14 Cell Therapy unit and U24 Medical imaging unit at CCMIJU have participated in a research that proposes the use of encapsulated cardiosphere-derived cells (CDC), obtained from heart tissue, as regenerative cell therapy.

The encapsulation of the cells has been carried out in NANBIOSIS Unit 10, as well as the characterization of the cells (both encapsulated and unencapsulated) for their application in regenerative medicine (cardiac regeneration); and unit 14 of NANBIOSIS has obtained the cell model used for the study “ – Explains Kaoutar Ziani Akrirout, research scientists of CIBER-BBN and NANBIOSIS Unit 10.

These cells are multipotent stem cells, which secrete growth factors capable of promoting revascularization and healing of infarcted tissue. However, the use of this therapy faces a great challenge, which is the survival and retention of these cells after their implantation in the infarcted area, since the heart is a tissue that is constantly contracting and expanding, which leads to the loss of these cells, as they are carried along by the bloodstream.

To solve the low retention of cells, members of the NanoBioCel research team, from the CIBER-BBN and attached to the Bioaraba Health Research Institute (IIS Bioaraba), in collaboration with researchers from the IIS Aragón and the CIBERCV, propose the encapsulation of the CDC of porcine origin within a three-dimensional alginate-poly-L-lysine-alginate matrix as a therapy for cardiac regeneration, since, thanks to this, the encapsulated cells will be able to remain adhered to the tissue for longer, giving them time to exercise their function. The final objective will be to verify its efficacy in swine infarction models.

The team has verified that the phenotypic characteristics, the gene expression profile, the ability to differentiate to other cell lines and the release of growth factors from these cells are not altered by the encapsulation process, essential aspects given that their preservation it is essential for cardiac regeneration. In addition, this procedure keeps them viable for a month, which would favor the possible regeneration of the tissue.

On the other hand, that a sustained release of growth factors is maintained in these cells suggests that the implantation of encapsulated CDCs will promote the formation of new blood vessels and, consequently, the regeneration of infarcted cardiac tissue.

The researchers suggest that encapsulated CDCs could be a highly interesting therapeutic alternative in the field of cardiac regenerative medicine.

Article of reference

Ziani K, Espona-Noguera A, Crisóstomo V, Casado JG, Sanchez-Margallo FM, Saenz-Del-Burgo L, Ciriza J, Pedraz JL. Characterization of encapsulated porcine cardiosphere-derived cells embedded in 3D alginate matrices. Int J Pharm. 2021 Apr 15;599:120454.[DOI

Read More

Online Course in Basic Procedures and Introduction to Mesenchymal Stem Cell Culture

From 30 August 2021 to 29 September 2021 Jesus Usón Minimally Invasive Surgery Centre (JUMISC) has organized an on line course on Procedures and Introduction to Mesenchymal Stem Cell Culture. The course is directected by Francisco Miguel Sánchez Margallo and run by researchers of NANBIOSIS U14 Cell Therapy Unit at JUMISC

Stem cells are cells capable of differentiating into a wide variety of cell types and can be isolated from different tissues. They have regenerative and anti-inflammatory properties thanks to the secretion of paracrine factors. Currently, these cells are being widely used in clinical trials for the treatment of different diseases such as Crohn’s disease, multiple sclerosis, diabetes, rheumatoid arthritis or myocardial infarction.

The objectives of this course is to teach the student to work in cell culture rooms, perform stem cell isolations, as well as the maintenance, expansion and conservation of these cell lines. You will also learn to characterize and differentiate these cell lines.

Once the course is finished, the student will be able to know the necessary equipment in a cell culture laboratory, the risks derived from working in these laboratories and the basic rules that must be taken into account to work in cell culture rooms. The student will also learn to prepare culture media, isolate stem cells from different tissues and everything necessary for the maintenance, expansion and conservation of cell lines. In addition, she will be able to acquire knowledge related to the differentiation protocols to different lineages: adipogenic, osteogenic and chondrogenic differentiation.

▶ DIRECTORS

Francisco Miguel Sánchez Margallo
Scientific Director of CCMIJU / Deputy Scientific Director of NANBIOSIS

Esther Lopez Nieto
Researcher at the Cell Therapy Unit of NANBIOSIS
of the JUMISC

▶ TEACHERS

Dr Javier García Casado.
Scientific Director of NANBIOSIS U14 Cell Therapy Unit
Postdoctoral researcher at the Cell Therapy Unit of the JUMISC

Dr Esher López.
Researcher at the Cell Therapy Unit of the JUMISC / NANBIOSIS

Federica Marinaro.
Researcher at the Cell Therapy Unit of the JUMISC / NANBIOSIS

Mª de los Angeles de Pedro
Researcher at the Cell Therapy Unit of the JUMISC / NANBIOSIS

Maria Pulido
Researcher at the Cell Therapy Unit of the JUMISC / NANBIOSIS

Veronica Alvarez.
JUMISC Superior Laboratory Technician

Information and enrollment here

Read More