+34 620 10 75 37info@nanbiosis.com

Posts Taged transplant-pancreatic-cells

Midyear meeting in Vitoria of European project DRIVE

CIBER-BBN participates in the project through NanoBioCel group, led by professor José Luis Pedraz Muñoz, Scientific Director of Unit 10 of NANBIOSIS, working on the optimization of formulations to be included in a bioartificial organ.

José Luis Pedraz Munoz and Jesus Izco coordinator of NANBIOSIS have participated in the meeting held in Vitoria on 3 and 4 of October.

The DRIVE objective is to develop new biomaterials and devices surgical transplantation and improve islet survival producing pancreatic insulin for the treatment of diabetes. Diabetes Mellitus is a chronic disease characterized by high blood glucose levels and affects 422 million people in the world, according to 2014 World Health Organization (WHO).

DRIVE is a four-year European project funded by the Horizon 2020 program for research and innovation of the Union European and endowed with 8.9 million euros. It is being conducted by 14 European partners and coordinated by the Royal College of Surgeons Ireland (Royal College of Surgeons in Ireland). Seeks to develop a bioartificial pancreas that is inserted into the body through minimally invasive techniques. To do this, they are being carried out preclinical studies to integrate this system in the human body and assess its effectiveness in people. The system will contain islets Pancreatic to restore the natural control of blood sugar and eliminate the need for multiple daily injections of insulin, thus improving the quality of life of patients.

Midyear meeting in Vitoria of European project DRIVE
Read More

Nanbiosis in the 2ª General Assambly of DRIVE project, Venice (16th-17th 2016)

Jesus Izco, Coordinator of NANBIOSIS and José Luis Pedraz, Scientific Director of Unit 10-Drug Formulation  of NANBIOSIS and NanoBioCel Group of CIBER-BBN, participated in the 2ª General Assambly of  DRIVE project, held in Venice, May 16th-17th 2016.

The second General Assembly of European project DRIVE “DIABETES-REVERSING-IMPLANTS FOR ENHANCED VIABILITY AND LONG TERM EFFICACY”, took place last 16 and 17 of May in San Servolo Island, Venice. Jesus Ciriza, from NanoBioCel  group, presented the work scheduled for this first year and the results obtained.

The DRIVE, a 4-year project to be carried out by 14 European partners, among which is CIBER-BBN, develops biomaterials and new surgical devices to improve transplantation and survival of insulin-producing pancreatic islet for the treatment of diabetes.

CIBER-BBN participates in the project thought Unit 10 of NANBIOSIS with the role of:

-Development of hydrogel formulations for β-Gel

-Developing unlimited future sources of insulin-producing β-cells

-Testing β-cell function in β-Gel using 3D in vitro tissue model.

Jesus Izco, Coordinator of NANBIOSIS and José Luis Pedraz, Scientific Director of Unit 10-Drug Formulation of NANBIOSIS and NanoBioCel Group of CIBER-BBN, participated in the 2ª General Assambly of DRIVE project, held in Venice, May 16th-17th 2016.
Read More

José Luis Pedraz, Scientific Director of the Unit 10: Drug Formulation of NANBIOSIS explained DRIVE European project in the third edition of Diabetes Experience Day, diabetic patients meeting that gathered 1500 people in Madrid. The DRIVE project, in which participate fourteen partners from seven European countries, among which is the CIBER-BBN, develops biomaterials and new surgical devices to improve transplantation and survival of insulin-producing pancreatic islet for the treatment diabetes.

 

The DRIVE project, in which participate fourteen partners from seven European countries, among which is the CIBER-BBN, develops biomaterials and new surgical devices to improve transplantation and survival of insulin-producing pancreatic islet for the treatment diabetes.

NANBIOSIS participation in the project focuses on the evaluation of the biocompatibility of new biomaterials with insulin-producing cells. These new biomaterials provided by Contipro will be compared with the biomaterials most frequently used to encapsulate cells such as alginate derivatives, a product obtained from seaweed.

At the same time, the research group coordinating Unit 10 of NANBIOSIS work in differentiating IPC insulin producing cells as an alternative to pancreatic islets for use in bioartificial organ source, with the aim of addressing the problems of availability of pancreatic islets for such therapies.

DRIVE European project 3rd edition of  Diabetes Experience Day.

Nanbiosis_Unit8-Drive Project-Improving transplant pancreatic cells_Dr. Jose Luis Pedraz
Read More