+34 620 10 75 37info@nanbiosis.com

Posts Taged therapy

1st Forum of CIBER-BBN/NANBIOSIS and CSIC Nanomed Conection researchers

The Nanomed Conection of the Spanish Research Council (CSIC) and the Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), together with its singular infrastructure NANBIOSIS, have organised a Forum on Nanomedicine Research during the days 30 of June and 1st of July to be held at the Institute of Advanced Chemistry of Catalonia (IQAC-CSIC) in Barcelona. The event will be also transmitted on-line previous registration.

This is the first meeting gathering together scientists from CIBER-BBN and its ICTS NANBIOSIS and from the CSIC’ Nanomed Conection with a shared interest in Nanomedicine.

This two days meeting will allow researchers to present their works in progress, share their scientific concerns and needs and discuss the impact of nanomedicine in the emerging fields of drug delivery, diagnosis and therapy.

The programe, available in the web of the forum includes these sessions:

  • Nanobiotechnological solutions for diagnosis and therapy
  • Drug delivery nanosystems
  • Applications for oncology (I and II)
  • Nanomedicine & other frontier applications

Attendance to the Forum (in person / or online) is free prior registration in the web of the forum (following this link):

Registration will remain open until June 26.
We hope to see you there!

Read More

OPEN SUBMISSION FOR FRONTIERS IN CHEMISTRY SPECIAL ISSUE ON NUCLEIC ACID-BASED APTAMERS IN THERAPEUTICS AND DIAGNOSTICS

Dr. Anna Aviñó, Scientific Coordianator of NANBIOSIS unit 29 of Oligonucleotide Synthesis Platform (OSP) and Dr. Carme Fàbrega from the Nucleic Acid Chemistry group from CIBER-BBN and IQAC_CSIC, together with Dr. Claudia Riccardi from the University of Naples Federico II, Dr. Stefania Mazzini from University of Milan, and Dr. Raimundo Gargallo from the University of Barcelona, acting as guest editors of the journal Frontiers in Chemistry, welcome authors to submit their articles on special issues on Nucleic Acid-Based Aptamers in Therapeutics and Diagnostics.

Nucleic acid‐based aptamers are short DNA or RNA sequences able to adopt specific three‐dimensional architectures. The high affinity and selectivity shown for a selected target, as well as the wide range of molecular targets, make aptamers a valuable alternative to antibodies in several biological applications.

Oligonucleotide-based aptamers have become an attractive tool not only in molecular biology research but also in modern medicine as precision instruments for molecular diagnostics, as sensing device and in therapy (as drugs or drug-delivery systems). Numerous improved methodologies for their selections and various applications, such as bioimaging, diagnoses, molecular therapies, and nanotechnology, have been reported to date.

This Research Topic will concentrate on the latest development’s nucleic acid-based aptamer chemistry. We encourage authors to submit original research and review articles dealing with all the aspects of aptamer research, including aptamer selection technology, engineering/modification strategies, characterization, development, and/or application of aptamers in therapeutics and diagnostics.

Manuscripts should be submitted on line on the following link.

Deadline for submission: 26 May 2022

Read More

Stimuli-Responsive Functionalization Strategies to Spatially and Temporally Control Surface Properties: Michael vs Diels–Alder Type Additions

NANBIOSIS Unit 6 Biomaterial Processing and Nanostructuring and Unit 3 Synthesis of Peptides collaborate in a research whose results are published by The Journal of Physical Chemistry B

Stimuli-Responsive Functionalization Strategies to Spatially and Temporally Control Surface Properties: Michael vs Diels–Alder Type Additions

Adriana R. KyvikCarlos Luque-CorrederaDaniel PulidoMiriam RoyoJaume VecianaJudith Guasch, and Imma Ratera
The Journal of Physical Chemistry B 2018 122 (16), 4481-4490

DOI: 10.1021/acs.jpcb.8b01652

Stimuli-responsive self-assembled monolayers (SAMs) are used to confer switchable physical, chemical, or biological properties to surfaces through the application of external stimuli. To obtain spatially and temporally tunable surfaces, we present microcontact printed SAMs of a hydroquinone molecule that are used as a dynamic interface to immobilize different functional molecules either via Diels–Alder or Michael thiol addition reactions upon the application of a low potential. In spite of the use of such reactions and the potential applicability of the resulting surfaces in different fields ranging from sensing to biomedicine through data storage or cleanup, a direct comparison of the two functionalization strategies on a surface has not yet been performed. Although the Michael thiol addition requires molecules that are commercial or easy to synthesize in comparison with the cyclopentadiene derivatives needed for the Diels–Alder reaction, the latter reaction produces more homogeneous coverages under similar experimental conditions.

 

Read More