+34 620 10 75 37info@nanbiosis.com

Posts Taged self-assembling

Identification of a novel nanotherapy active in cancer cells resistant to chemotherapy

Researchers of the Nanotoxicology Unit (u18-nanotoxicology-unit) led by Ramon Mangues and Isolda Casanova at the Research Institute of the Hospital de Sant Pau and the Protein Production Platform (u1-protein-production-platform-ppp), led by Antonio Villaverde and Neus Ferrer Miralles of the Institute of Biotechnology and Biomedicine at the Autonomous University of Barcelona, both belonging to the ICTS NANBIOSIS (nanbiosis.es) of the CIBER-BBN, have participated in the production of a novel Nanotoxin capable of selectively killing cancer cells which became resistant to chemotherapy. Development of cancer resistance frequently associates with the overexpression of the CXCR4 receptor.

It is known that chemotherapy kills cancer cells, mainly, by induction of apoptosis, after damaging the cell DNA; therefore, to survive resistant cancer cells develop anti-apoptotic mechanisms. In contrast, a Nanotoxin that has incorporated the exotoxin of Corynebacterium diphtheriae and a targeted ligand that selectively internalizes in CXCR4+ cancer cells, exploits a mechanism of cell death alternative to apoptosis, thus, effectively killing resistant cancer cells in a colorectal cancer model.  The new mechanism is the induction of a blockade of protein translation, by inhibition of the elongation factor 2, which renders sensitive to therapy cancer cells resistant to chemotherapy.

The described work opens a new avenue for the exploration of antitumor activity in cancer that relapses after current therapy, an unmet medical need in oncology, and therefore, it could have an important impact in cancer patient well being.

Reference:

Naroa Serna, Patricia Álamo, Prashanthi Ramesh, Daria Vinokurova, Laura Sánchez-García, Ugutz Unzueta, Alberto Gallardo, María Virtudes Céspedes, Esther Vázquez, Antonio Villaverde, Ramón Mangues, Jan Paul Medema. Nanostructured toxins for the selective destruction of drug-resistant human CXCR4 + colorectal cancer stem cells. doi: 10.1016/j.jconrel.2020.01.019.

Read More

A step forward for the design of multifunctional protein nanomaterials for cancer therapies

Researchers of NANBIOSIS Unit 1 and NANBIOSIS Unit 18, led by Prof Antoni Villaverde have published the article at the prestigious scintific magazine titled Collaborative membrane activity and receptor-dependent tumor cell targeting for precise nanoparticle delivery in CXCR4+ colorectal cancer

The researchers have shown that the combination of cell-penetrating and tumor cell-targeting peptides dramatically enhances precise tumor accumulation of protein-only nanoparticles intended for selective drug delivery, in mouse models of human colorectal cancer. This fact is a step forward for the rational design of multifunctional protein nanomaterials for improved cancer therapies.

Protein production has been partially performed by the  ICTS NANBIOSIS U1, Protein Production Platform and the nanoparticle size analysis by the U6  of NANBIOSIS Biomaterial Processing and Nanostructuring Unit. Biodistribution studies were performed by the U18 of the ICTS NANBIOSIS, Nanotoxicology Unit.

Article of reference:

Rita Sala, LauraSánchez-García, Naroa Serna, María Virtudes Céspedes, Isolda Casanova, Mònica Roldán, Alejandro Sánchez Chardig, Ugutz Unzueta, Esther Vázquez, Ramón Mangues, Antonio Villaverde. Collaborative membrane activity and receptor-dependent tumor cell targeting for precise nanoparticle delivery in CXCR4+ colorectal cancer. Acta Biomaterialia, 99, Pages 426-432. 2019,

Read More

Why the poor biodistribution so far reached by tumor-targeted medicines?

Cell-selective targeting is expected to enhance effectiveness and minimize side effects of cytotoxic agents. Functionalization of drugs or drug nanoconjugates with specific cell ligands allows receptor-mediated selective cell delivery. However, it is unclear whether the incorporation of an efficient ligand into a drug vehicle is sufficient to ensure proper biodistribution upon systemic administration, and also at which extent biophysical properties of the vehicle may contribute to the accumulation in target tissues during active targeting. To approach this issue, structural robustness of self-assembling, protein-only nanoparticles targeted to the tumoral marker CXCR4 is compromised by reducing the number of histidine residues (from six to five) in a histidine-based architectonic tag. Thus, the structure of the resulting nanoparticles, but not of building blocks, is weakened. Upon intravenous injection in animal models of human CXCR4+ colorectal cancer, the administered material loses the ability to accumulate in tumor tissue, where it is only transiently found. It instead deposits in kidney and liver. Therefore, precise cell-targeted delivery requires not only the incorporation of a proper ligand that promotes receptor-mediated internalization, but also, unexpectedly, its maintenance of a stable multimeric nanostructure that ensures high ligand exposure and long residence time in tumor tissue.

Protein production has been partially performed by the  ICTS NANBIOSIS U1, Protein Production Platform and the nanoparticle size analysis by the U6  of NANBIOSIS Biomaterial Processing and Nanostructuring Unit. Biodistribution studies were performed by the U18 of the ICTS NANBIOSIS, Nanotoxicology Unit.

The concept presented by the authors of the present research might represent a convincing explanation of the poor biodistribution so far reached by tumor-targeted medicines, including antibody-drug conjugates. In addition to this, they offer a potential developmental roadmap for the improvement of these drugs, of high intrinsic therapeutic potential, to reach satisfactory efficiencies in the clinical context.

Hèctor López-Laguna, Rita Sala, Julieta M. Sánchez, Patricia Álamo, Ugutz Unzueta, Alejandro Sánchez-Chardi, Naroa Serna, Laura Sánchez-García, Eric Voltà-Durán, Ramón Mangues, Antonio Villaverde and Esther Vázquez. Nanostructure Empowers Active Tumor Targeting in Ligand-Based Molecular Delivery. Part. Part. Syst. Charact. 2019.

DOI: 10.1002/ppsc.201900304

Read More