+34 620 10 75 37info@nanbiosis.com

Posts Taged regenerative-medicine

Developing Support Technologies for adressing traslational gaps in regenerative medicine.

On the 20th of October, CIBER-BBN group NanoBioCell – NANBIOSIS U10 Drug Formulation unit organises the Conference “Developping support technologies for adressing traslational gaps in regenerative medicine” by Dr. James-J Yoo.

The Conference will take place in the Assembly hall of the Faculty of Pharmacy on Friday 20th of October, 2023 from 12:00 to 13:00, as part of the JRL program Advanced Pharma Development. The Conference will be broadcasted.

Dr. Yoo is Professor and Associate Director of the Wake Forest Institute for Regenerative Medicine (WFIRM), with cross-appointments to the Departments of Urology, Physiology and Pharmacology, Clinical and Translational Science Institute, and the Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences. He is also an elected Fellow of the American Institute for Medical and Biological Engineering (AIMBE).

Dr. Yoo’s research efforts have been directed toward developing tissue engineering technologies and therapeutic approaches for clinical translation. A few notable examples of successful clinical translation include the bladder, urethra, vagina, and muscle cell therapy for incontinence.

Dr. Yoo has been a lead scientist in the bioprinting program at WFIRM and has been instrumental in developing skin bioprinting and integrated tissue and organ printing (ITOP) systems for preclinical and clinical applications.

He and his teams were recently awarded first and second place in NASA Centennial Vascular Tissue Challenge for bioprinting metabolically active thick liver tissue that retained function for thirty days.

Dr. Yoo has authored more than 340 scientific publications, 100 patent registrations/applications, 1000 scientific presentations, 310 invited lectures and mentored over 320 trainees, ranging from undergraduate students to practicing physicians

For further information contact: Angela.Losada@ehu.eus

Read More

The Medicine of the Future needs the Nanomedicine Revolution. This is why

The medicine of the future is an increasingly tackled topic. In the context of global concern for the sustainability of the health system (chronic diseases, new disorders, aging population and financing problems), nanomedicine could promote more affordable and personalized health care and improve the quality of life of the patients.

Between innovative techniques already implemented and concepts that evoke science fiction (nanobots, fluorescent particles working as spies, tiny Trojan horses introduced into our body …), nanomedicine generates great expectations.

Nanomedicine, what is it exactly?

Nanomedicine is the application of nanotechnology to medicine, that is, the use of nanotechnologic systems for the prevention, diagnosis or treatment of diseases, due to the particular properties that materials present on a nanometric scale. (Yes, although it seems strange, the same material has totally different attributes and behaviours when “nano” amounts of it are manipulated, what is very important in medicine, since many of the processes of the human body take place on a nanometric scale).

The current state, thanks to the previous effort.

When in 1959 Richard Feynmand, (Nobel Prize in Physics in 1965), gave his speech “There is a lot of space down there”, he opened the door to research at the nano scale: from 1nm to 100nm, this is one-millionth of a millimeter (10-9 meters); we are talking about the range of sizes resulting from dividing the diameter of a hair between 1,000 and 10,000, (or what a nail grows in a second).

Since the entry into the market of the first nanomedicine in 1995 (Doxil®, a drug encapsulated in liposomes for the treatment of cancer), nanoparticles or nanostructures have been developed for the controlled release of drugs in cancer and other pathologies, nanodevices have been created for disease diagnosis or nanomaterials have been designed for applications in regenerative medicine, and even messenger RNA vaccines for Covid-19, such as those from Pfizer and Moderna, are nanoformulated. Today there are on the market a hundred nanoformulated drugs all thanks to previous research and development of nanomaterials and nanoparticles over the last three decades.

The “Observatory of Trends in Medicine of the Future” promoted by the Roche Institute foundation has recently published a Report on Nanomedicine coordinated by Dr. Ramón Martínez Máñez, Professor of Inorganic Chemistry at the UPV and Scientific Director of the Centre for Networked Biomedical Research in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) in which Dr. José Becerra, Professor of Cell Biology at the University of Malaga and Principal Researcher at CIBER-BBN, BIONAND and IBIMA, Dr. Pilar Marco, Principal Investigator of the Nanobiotechnology group for the diagnosis (Nb4D) of the IQAC-CSIC and Coordinator of the Nanomedicine Research Program of the CIBER-BBN and Dr. María Jesús Vicent, Chief Researcher of the Therapeutic Polymers Laboratory and coordinator of the Advanced Therapies Area of ​​the Príncipe Felipe Research Center have participated as experts. The report was presented at the IV Conference “Anticipating the Medicine of the Future” on November 30, 2021 where a debate was held by the above mentioned in which various topics related to nanomedicine were discussed, such as its applications and barriers.

Nanomedicine applications of today and tomorrow

Nanomedicine is completely transversal, multidisciplinary and dependent on other disciplines, so its applications are multiple and complementary to other branches of knowledge such as artificial intelligence, but the following fields stand out fundamentally.

The design of nanomaterials that improve biocompatibility or biomechanical properties is investigated and can be used for the manufacture of implants that allow replacing portions of diseased tissue and that can even be designed in a personalized way attending to the individual response of each patient, minimizing the risk of rejection by the patient in regenerative medicine.

Nanoparticles are used to build highly sensitive nanodiagnostic platforms, which provide comprehensive biological information easily, quickly and economically at an increasingly early stage. Pilar Marco visualizes a future where “the diagnosis could be our molecular fingerprint, so that the detection of changes in said fingerprint could lead to the detection of a disease before the patient presents symptoms. In turn, this will contribute to prediction and prognosis since, if a large amount of information is available, it can be crossed with genetic information”.

Nanomedicine makes it possible to improve the pharmacokinetics and pharmacodynamics of current drugs, so that they specifically deploy their activity in diseased cells and tissues in a controlled way over time and crossing any biological barrier, which is called controlled drug release. According to Ramón Martínez “Any disease can be susceptible to use these systems to deliver a drug in the appropriate organ or tissue with the reduction of drug doses and side effects.”

Finally, nanotechnology methods facilitate the fusion of diagnosis and therapy in the new medical field of theragnostic; diagnose and treat at the same time by understanding the biological response to treatments, that is, the administration of drugs whose molecules allow visualize how the drug is working.

Barriers faced by nanomedicine

In addition to the difficulties presented by nanomedicine in matters of regulation and industrial property, the aforementioned experts agree that one of the most important challenges is the standardization of manufacturing procedures and quality controls, investment is needed in infrastructures to fine-tune manufacturing and standardization systems (manufacturing of nanoparticles under GMP) and in collaboration with the private sector, which is crucial, to make nanomedicine reach the productive sector and society.

But there are also barriers in the research itself, and funding is needed to break them down. In nanomedicine research, cost / effectiveness analyses have to be focused on the long term. Professor José Becerra explains it very clearly: “Research topics become fashionable and it happens frequently that the years go by and administrations “get tired” of financing a certain field and this is a problem because if a tree is planted by a person who knows It takes ten years to bear fruit, this person has to take care of the tree, but if we give the tree care to someone who does not know about trees, probably this person will abandon the tree in five years … Scientific policies have to persevere in financing nano and accompany it with an improvement in the regulation of products and only then will companies invest in this area”.

At the end of the debate, Professor José Becerra celebrated that the Carlos III Health Institute opted, fifteen years ago, for the creation of a CIBER in Bioengineering, Biomaterials and Nanomedicine, as a tool for scientific policy, he also mentioned the NANBIOSIS platform created by CIBER-BBN, CCMIJU and BIONAND, recognized as ICTS by the Ministry and available for companies and researchers to produce and characterize bio and nanomaterials, and stated that “it is evident that it is not possible to advance in the transfer of knowledgy from nano to the clinic at the same rate as is done in other knowledge areas but to take care of this project is essential”.

Related news:

Nanomedicine in the Medicine of the future

The Nanomedicine Revolution

informe sobre nanomedicina

‘Point-of-care or PoC’ devices are able to directly detect the genetic material of the virus in just 30 minutes

A more effective nanomedicine has been developed for the treatment of Fabry rare disease

Nanomedicine: how to get drugs to the place where they have to act.

A new generation of devices for the rapid, cheap and easy diagnosis of candidemia

New Nanomedicines for the topical treatment of complex wounds

Sources of information:

Nanomedicine (European Nanotecnology Platform)

IV Jornada Anticipando la Medicina del Fututo

Nanomedicine Report

Nanomed Spain

Read More

Nanomedicine in the Medicine of the Future

Scientists of CIBER-BBN and NANBIOSIS ICTS have participated in the 4th Conference “Anticipating the Medicine of the Future”, which took place on November 30th, organized by the Roche Institute Foundation. The topics for this ediction had been identified by the Observatory of Trends in the Medicine of the Future: Pharmacogenomics, Nanomedicine and Epigenomic

The event counted with three roundtables for discussion in relation to the three topics. The second one, on Nanomedicine, was moderated by Joaquín Arenas, Director of the Research Institute of the 12 de Octubre University Hospital.

Ramón Martínez Máñez, Professor of Inorganic Chemistry at the Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) of the Polytechnic University of Valencia and Scientific Director of CIBER-BBN and Unit 26 of NANBIOSIS gave a talk entitled “Macro problems, nano solutions”. After that, the debate was openwith the participation of Maria Pilar Marco, Research Professor of the Spanish Council for Scientific Research (CSIC) and Coordinator of the Nanomedicine Research Program CIBER-BBN and Scientific Director of unit 2 of NANBIOSIS, CAbS, José Becerra, Emeritus Professor of of Cell Biology of the University of Malaga and Principal Investigator of CIBER-BBN, BIONAND and IBIMA and Maria Jesús Vicent, Coordinator of the Advanced Therapies Area of the Principe Felipe Research Center.

The Roundtable discussed the applications of nanomedicine in the Medicine of the Future and in Personalized Precision Medicine, as well as the challenges facing nanomedicine.

The Observatory of Trends in the Medicine of the Future, promoted by the Roche Institute Foundation, aims to generate and disseminate knowledge in areas of incipient knowledge related to Personalized Precision Medicine and that are part of the Medicine of the Future.

In this context, the fundation Instituto Roche has recently published a report on nanomedicine coordinated by Ramón Martínez in which José Becerra, María Pilar Marco and María Jesús Vicent have participated as experts.

Currently, nanoparticles or nanostructures are being applied for the controlled release of drugs in cancer and other pathologies and nanodevices for the diagnosis of diseases or the development of nanomaterials for applications in regenerative medicine. In the coming years, and with the translation into clinical practice of more and more developments based on these technologies, nanomedicine will contribute to the medicine of the future approaching the diagnosis and treatment of diseases earlier, more efficiently and in a more efficient and personalized way.

https://www.institutoroche.es/observatorio/nanomedicina

Read More

New Equipment available for the Regenerative Medicine Research Line of the U10 of NANBIOSIS

The Unit 10 of Drug Formulation of the ICTS NANBIOSIS coordinated by the CIBER-BBN NanoBioCel group directed by Jose Luis Pedraz, which belongs to the University of the Basque Country, has been present at the signing of the agreement that gives support by the Provincial Council of Alava within the framework of the Advance Pharma Development project, together with the research and technological development center TECNALIA. 

With this agreement, the NanoBioCel research group will receive in the next two years (2021-2023) a contribution of 650,000 €, which will allow the hiring of research personnel and the purchase of specific equipment for the regenerative medicine research line. The first equipment purchased to strengthen U10 in Bio-printing is the RegenHU Bioprinter: R-GEN 100, which will be located in the P3 Laboratory of the Lascaray Research Building. This bioprinter will bring two new technologies to the bioprinting techniques currently being used at U10: extrusion and droplet techniques. With RegenHU it will be possible to work with two new bioprinting processes: electrospinning and electrowriting. Electrospinning is a promising technique for the controlled release of drugs and electrowriting (electrostatic writing) will allow the construction of scaffolds with variable diameters in their design and elaboration.

Read More

From natural by-products to cell delivery systems for regenerative medicine

Researchers from NANBIOSIS U10 Drug Formulation unit (CIBERBBN – UPV/EHU led Rosa María Hernández, have developed a biomedical device consisting of by-products from the food industry and which displays excellent properties for use in regenerative medicine. The work has been published in the Green Chemistry Jurnal, one of the most prestigious international journals in chemistry and the second most important one in the field of sustainable science. The work has also been selected for the cover page of this issue.

Researchers in the UPV/EHU’s NanoBioCel and Biomat groups have developed a biomedical device consisting of by-products from the food industry and which displays excellent properties for use in regenerative medicine. The novel device comprises soy protein and chitin, which form a matrix with a porous, interconnected microarchitecture similar to that of certain body tissues.

Added to the growing need in recent years to develop new therapies for biomedical applications is the widely called-for social requirement to be environmentally friendly. In this respect, the group of researchers has shown that natural by-products from the food industry, normally discarded in industrial processes, could be an excellent source of biomaterials for producing biomedical devices.

“It is important to point out that to date no one has exploited the potential in regenerative medicine displayed by soy protein and chitin blended in a microporous matrix,” stressed the researchers. “As the first milestone in this respect, this novel device incorporates two natural components obtained from the food industry, thus contributing towards the widely called-for social requirement to upgrade waste from production on an industrial level. The device has also displayed some physico-chemical and mechanical properties suitable for applications in regenerative medicine. What is more, it has also been found to be totally biocompatible not only in in vitro cell lines but also in an in vivo murine model.  Finally, we have confirmed that this device is capable of hosting a large number of viable stem cells inside it, thus increasing its level of bioactive compound secretion and displaying its potential as a very effective vehicle in cell therapy.”

This biotechnological approach may have a potentially successful application in the matrix-based regenerative medicine industry. These devices capable of hosting stem cells are destined to be the revolution, not only in biomedical research but also in everyday clinical practice. “Clinical scenarios as complex as chronic injuries or bone problems need a multifocal approach which combines bioactive matrices with biological agents having regenerative effects,” they concluded.

Article of reference

Read More

SINO-SPAIN Biomedical and Pharmaceutical Conference with NANBIOSIS participation

Last 7 June 2018 took place in Zaragoza, the Sino-Spain Biomedical and Pharmaceutical Conference, as a result of years of cooperation with Chinese institutions, organizad by Zaragoza University  and Aragonese Foundation for Research & Development of Aragon Government (ARAID), to promote initiatives and foster bilateral collaboration in biomedical and pharmaceutical sectors between Spain and China.

The themes of the forum were:

  • Molecular engineering for biomedical products
  • Diagnoses &Design for new devices for medical uses
  • Tissue Engineering and regenerative medicine
  • Pharmacology and nanometerials for medical application
  • Advanced therapies for cancer research

 

Researcher of three units of NANBIOSIS partcipated in the Conference: from U13. Tissue & Scaffold Characterization Unit, Manuel Doblaré and Iñaki Ochoa who gave a talk on  “Organ On Chip: Applications for cancer research”, from  U9. Synthesis of Nanoparticles Unit, Jesús Santamaría, who spoke on “Research on nanomedicine at the Nanostructured films and particles” and from U27. High Performance Computing, Esther Pueyo, who spoke about “Patterns of cardiac aging: Mechanisms and relation to disease” and Laura Ordovas, as moderator.

 

 

 

Read More

NANBIOSIS U7 Scientific Director, J Samitier and his vision on technology as a source of eternal youth

Josep Samitier, Scientific Director of U7 of NANBIOSIS, Nanotechnology Unit, has been recently featured in an article in the Jornal “El Mundo”

Following the publication of the book “The Death of Death” by Jose Luis Cordeiro and David Wood, which says that by 2045 death will optional thanks to new technologies finding a way to cure aging, the article interviewed Josep Samitier, to have a more realistic point of view.

The book ‘Death of death’ assures that in 2045 die will be something optional thanks to the new technologies will find a way to cure aging based on success examples of regenerative medicine, stem cell treatments, therapies genetics, 3D printing of organs or bioengineering, that in approximately 30 years aging will be a curable disease, that young indefinite longevity will be achieved, or, in other words, the possibility of being young indefinitely and that death will be, defect, something optional.

José Luis Cordeiro, co-author of the book goes back to 1950 to remember that it was there when it was discovered that the problem of cancer is that it is biologically immortal. They are, in the same way, germ cells or some stem cells, present in all organisms. “What we did not have before is the technology we have today, which allows us to detect the genetics of these cells, when the body dies, the germ cells, the mother and the cancer die, because the food ends, but if they are isolated and they are kept in the right environment, these cells are kept alive permanently”. So, his proposal is to investigate what determines that these are immortal cells and try to imitate the process to find the way that this affect our aging until it stops.

Dr. Angel Raya, Principal Investigator of the CIBER-BBN in the Center of Regenerafiva medicine of Barcelona clarifies that “the diseases that affect us in relation with aging are diseases in which the symptom is produced by the failure of one of the parts of the system, the idea is that if we recover the function of that part in a functioning system, the patient will not have that disease, but that does not mean that he will have more life”.

According to Josep Samitier, “there are fundamental problems associated with aging, such as the loss of muscle mass, the loss of certain capacities …, the human being has cells that are born, develop, die and they are replaced by others, but as we gain years, the replacement stops occurring, understanding. Well this, that does not happen and is maintainance is much more complicated”. In short, the experts consulted affirm that the human body is not reduced to the parts or organs that make it up, and that fixing its mechanical failures will not result in lengthen life indefinitely. “A house made of billets can crumble, but the materials that constituted it, the iron and silicon atoms that form the sand and the iron beams will remain there even if the house disappears,” continues Samitier, “In the same way, we are made up of water, carbohydrates, fats …, the atoms of these substances endure and are quite immortal, but we have to think about the organization of this system, and what we see is that it is something difficult to maintain in a functional way for many years. Advances in bioengineering will help us to live longer and with better quality of life, we will solve some issues and we will have options to fix hearts after heart attacks and things like that, but the problem is not that one thing fails, it is that several fail”.

Article

Read More

NANBIOSIS ICTS invites groups and companies to discuss Smart Biomaterials and devices for Drug Delivery

On February 22nd, the National School of Health of the Carlos III Health Institute hosted the forum on Smart Biomaterials and biomedical devices for applications in drug delivery and regenerative medicine, organized by the ICTS Nanbiosis, an infrastructure shared by the CIBER-BBN and the Center of Minimally Invasive Surgery Jesus Usón (CCMIJU). This is the first groups/companies meeting organized by Nanbiosis, in which about 70 B2B meetings  were held.

The meeting brought together about 40 participants from 14 research groups (from the CIBER-BBN and the CCMIJU) and 10 companies, which discussed the latest advances in the research lines developed by the groups and platforms of Nanbiosis and on the needs and demands of the industry in smart biomaterials and devices for targeted drug delivery and regenerative medicine.

Jesus Izco, Coordinator of Nanbiosis, presented the new Cutting-Edge Biomedical Solutions“, soon available on the ICTS website. These are integrated solutions to advanced challenges in nanomedicine, biomaterials, medical device, and diagnostic that can be developed by several units under a  one-stop shop model, optimized with the experience and scientific and technical knowledge of the research groups of excellence that manage the involved units. Some of the Cutting-edge biomedical solutions presented in the meeting were preclinical validation of biomaterials, mechanical and surface characterization, biocompatibility and studies of biofilm formation and infections.

The CIBER-BBN prsentations were: “Instructive materials for regenerative medicine” by Miguel Ángel Mateos (NANBIOSIS U5 IP: Elisabeth Engel); “Molecular biomaterials for drug delivery and biomedical applications” byNathaly Veronica Segovia (NANBIOSIS U6 / IP Jaume Veciana and Nora Ventosa); “Advances with micro-nano technologies for in vitro devices and point of care” by Rosa Villa (NANBIOSIS U8 ); “Development of new dosage forms for advanced therapies based on new biomaterials” by José Luis Pedraz (NANBIOSIS U10); “Contact lenses functionalized for the prevention of corneal infections” by Jordi Esquena (NANBIOSIS U12 / IP Carlos Rodríguez); “Combined in-silico and in-vitro models of the cell microenvironment and drug delivery effects in cancer and tissue engineering applications” by Fany Peña (NANBIOSIS U13 / IP Miguel Á. Martínez); “Surface of the biomaterial: the first contact with our body” by  Marisa González (NANBIOSIS U16 ); “Use of biomaterials for the repair of soft tissue defects” by Bárbara Pérez Khöler (NANBIOSIS U17 / IP J M. Bellón and Gemma Pascual); “Controlled release systems based on mesoporous materials with molecular doors for applications in therapy and diagnosis” by Ramón Martínez Máñez (NANBIOSIS U26); “New intelligent devices and biomaterials for the treatment of pathologies of the retina and the nervous system” (Eduardo Fernández); and “Near-infrared responsive scaffolds for biomedical applications” (Nuria Vilaboa).

On the part of the CCMJU, the presentations were the following: “Application of Mesenchymal Stem Cells in preclinical models for surgical and cardiovascular research” by Javier García Casado (NANBIOSIS U14); “Regenerative medicine in animal models of cutaneous healing and diabetic models” by Beatriz Moreno (NANBIOSIS U19); “Preclinical studies of biomaterials” by Idoia Díaz-Güemes (NANBIOSIS U21 /IP: FM Sánchez Margallo); “Porcine model of myocardial infarction as a translational research platform in regenerative medicine” by Verónica Crisóstomo (NANBIOSIS U24).

In the turn of the companies, they presented some collaboration opportunities AJL, i-Vascular, Praxis Pharmaceutical, Technical Proteins Nanobiotechnology and REGEMAT 3D; and they also participated in the Rovi, Viscofan, Biomag and Biogelx Laboratories forum.

These meetings, where links are established between research groups and companies, address issues of business and scientific interest, allowing direct contacts between researchers and business managers.

Read More

Laura Lechuga in the fight against cancer

Dr. Laura Lechuga, Scientific Director of Unit 4 of NANBIOSIS is highlighted in Cinco Días. Elpais Economía  for its fight against cancer and, in particular, for the device developed with its team to detect the disease in matter of minutes

“Have you ever wondered why glucose meters are so smart that they just measure sugar? The answer is that they carry specific proteins that only interact with sugar, “explains the doctor.  The same idea lies in the device designed by Laura Lechuga and her research group “With a minimum sample of the patient, it is possible to detect the presence of different diseases depending on the protein located in the micro-receiver, in an economic and fast way”.

Due to these characteristics, this developed technology, has great potential for greatly improving health in underdeveloped countries, as well as in other fields like measure the presence of pollutants or toxic agents in the environment.

In the news published by Cinco Días. Elpais Economía other scientists in the fight against cancer are interviewed, as Angel Raya (from CIBER-BBN) about the regenerative medicine.

More information here

Read More

The Scientific Director and the Coordinator of NANBIOSIS, Jaume  Veciana and Jesús Izco, were invited by Professor Stefano Geuna (Professor of Human Anatomy at the Department of Clinical and Biological Sciences of the University of Torino) last 9th of March 2016 to present the CIBER-BBN, its scientific program and  its technologies to researchers of l’Università di Torino, in order to explore the possibilities of collaboration between the two institutions and promoting joint projects.

The meeting took place at the Molecular Biotechnology Center of the Molecular Biotechnology and Health Science department (www.mbc.unito.it/en ). The audience was made up of members representing six departments such as Department of Molecular Biotechnology and Health Sciences, Department of Neurosciences or the Department of Medical Sciences among others. After the presentations, up to ten face to face meetings were organized with research groups and staff of the Internalization Office from different departments to look for synergies and find out ways of collaboration. Topics such as nanoencapsulation for drug delivery, functionalization of biomaterials for regenerative medicine, especially for nerve regeneration or cell therapy for cancer were discussed and many common interests were detected. Following up the meeting, several actions were agreed and some of them have been already initiated to start new collaborations between both institutions.

L’Università di Torino is actively developing biotechnologies in the field of biomedical sciences, with specific focus on the study of the molecular mechanisms at the basis of physiopathological processes that have a great impact on human health, such as cardiovascular diseases, inflammation, stem cell biology and cancer. These researches are based on experimental work carried out by the biomedical departments of l’ Università di Torino.

Nanbiosis U6_Partnering opportunities with l’Università degli studi di Torino 9March2016
Read More