+34 620 10 75 37info@nanbiosis.com

Posts Taged phoenix-project

Fabry Desease in the Rare Disease Day: A New Hope

WHY DO CELEBRATE TODAY THE INTERNATIONAL #RareDiseaseDay?

29 of February is a ‘rare’ date and February, a month with a ‘rare’ number of days, has become a month to raise awareness about rare diseases and their impact on patients’ lives.  Since 2008 thousands of events happen every year all around the world and around the last day of February with the aim of improving equity and reducing stigmatization for people who live with more than 6,000 rare diseases.

WHAT ARE RARE DISEASES

Rare diseases are pathologies or disorders that affect a small part of the population (less than 5 per 10,000 inhabitants) and generally have a genetic component. They are also known as orphan diseases.

Diseases present a series of particular symptoms, and it is very difficult to diagnose what their true cause is. These disorders or alterations that patients present must be evaluated by a specialist, depending on each case.

Today 5% of the world population suffer from them. This translated into numbers, corresponds to approximately 300 million affected.

A patient with a rare disease waits an average of 4 years to obtain a diagnosis, in 20% of cases it takes 10 or more years to achieve the proper diagnosis.

ORPHAN DRUGS

To combat this disease, patients need to be treated with so-called orphan drugs. They serve to prevent and treat pathology. Its composition is based on biotechnological compounds whose manufacture is very expensive and not profitable for companies. For this reason, cooperation of governments is needed as well as financial incentives to encourage pharmaceutical companies to develop and market medicines to make these treatments accessible to a greater number of people.

FABRY DISEASE

Fabry is one of the rare diseases that currently lack a definitive cure. Symptoms may include episodes of pain, especially in the hands and feet (acroparesthesias); small dark red spots on the skin called angiokeratomas; decreased secretion of sweat (hypohidrosis); opacity of the cornea (cataracts) and hearing loss. Internal organs such as the kidney, heart, or brain may be involved, resulting in progressive kidney damage, heart attacks, and strokes.

Fabry disease is a lysosomal storage disease arising from a deficiency of the enzyme α-galactosidase A (GLA). The enzyme deficiency results in an accumulation of glycolipids, which over time, leads to cardiovascular, cerebrovascular, and renal disease, ultimately leading to death in the fourth or fifth decade of life. Currently, lysosomal storage disorders are treated by enzyme replacement therapy (ERT) through the direct administration of the missing enzyme to the patients.

SMART 4 FABRY” EUROPEAN PROJECT

CIBER-BBN, through the researcher Nora Ventosa has coordinated the european project “Smart-4-Fabry” developed during 2017-2021, the proyect was undertaken by a consortium formed by ten partners, including private companies and public institutions in Europe and Israel, with a Horizon 2020 financial programme by the European Commission (H2020-NMBP-2016-2017; call for nanotechnologies, advanced materials, biotechnology and production; Proposal number: 720942-2).

In view of their advantages as drug delivery systems, liposomes are increasingly being researched and utilized in the pharmaceutical, food and cosmetic industries, but one of the main barriers to market is their scalability.

Depressurization of an Expanded Liquid Organic Solution into aqueous solution (DELOS-susp) is a compressed fluid-based method that allows the reproducible and scalable production of nanovesicular systems with remarkable physicochemical characteristics, in terms of homogeneity, morphology, and particle size. The objective of this work was to optimize and reach a suitable formulation for in vivo preclinical studies by implementing a Quality by Design (QbD) approach, a methodology recommended by the FDA and the EMA to develop robust drug manufacturing and control methods, to the preparation of α-galactosidase-loaded nanoliposomes (nanoGLA) for the treatment of Fabry disease.

Through a risk analysis and a Design of Experiments (DoE), researechers obtained the Design Space in which GLA concentration and lipid concentration were found as critical parameters for achieving a stable nanoformulation. This Design Space allowed the optimization of the process to produce a nanoformulation suitable for in vivo preclinical testing.

The new nanoformulation developed by Smart4Fabry for the treatment of Fabry disease achieved the ODD (Orphan Drug Designation) by the European Commission. The new nanomedicine is more effective and has a better biodistribution than the current treatments, based on enzyme replacement. The new nanomedicine is based on a nanovesicle that protects the enzyme and achieves a better cell internalisation, thus reducing the doses needed, the total cost and improving the quality of patients.

Four units of NANBIOSIS participated in the project:

– U1 Protein Production Platform (PPP) led by Neus Ferrer and Antony Villaverde at IBB-UAB for the production and purification in different expression systems for R&D purposes.

– U3 Synthesis of Peptides Unit led by Miriam Royo at IQAC-CSIC performed all the chemical process of the Smart-4-Fabry project, i.e. design and synthesis of peptides used as targeting ligands in the nanoliposome formulation.

– U6 Biomaterial Processing and Nanostructuring Unit led by Nora Ventosa at ICMAB-CSIC developed tasks related to the manufacture of the nanoliposome formulation of GLA enzyme and the physico-chemical characterization (this unit counts with plants at different scales, from mL to L, which allow process development by QbD and process scale-up, as well as instrumental techniques for assessment of particle size distribution, particle concentration, particle morphology and stability, and Z-potential) .

– U20 In Vivo Experimental Platform led by Ibane Abásolo at VHIR carried out the non-GLP preclinical assays of the project (in vivo efficacy, biodistribution and tolerance/toxicity assays).

PHOENIX: OPEN INNOVATION TEST BED

Researchers of CIBER-BBN and NANBIOSIS, led by Nora Ventosa, are currently participating in another european project, PHOENIX “Enabling Nano-pharmaceutical Innovative Products” in the framework of which this novel nanomedicine developed under the Smar4Fabry project and designed as Orphan Drug by the EMA, will be scaled-up and manufactured under GMP to enable its clinical testing.

Articles of reference:

Josep Merlo-Mas, Judit Tomsen-Melero, José-Luis Corchero, Elisabet González-Mira, Albert Font, Jannik N. Pedersen, Natalia García-Aranda, Edgar Cristóbal-Lecina, Marta Alcaina-Hernando, Rosa Mendoza, Elena Garcia-Fruitós, Teresa Lizarraga, Susanne Resch, Christa Schimpel, Andreas Falk, Daniel Pulido, Miriam Royo, Simó Schwartz, Ibane Abasolo, Jan Skov Pedersen, Dganit Danino, Andreu Soldevila, Jaume Veciana, Santi Sala, Nora Ventosa, Alba Córdoba, “Application of Quality by Design to the robust preparation of a liposomal GLA formulation by DELOS-susp method”, The Journal of Supercritical Fluids, Volume 173, 2021, 105204, https://doi.org/10.1016/j.supflu.2021.105204.

Judit Tomsen-Melero, Solène Passemard, Natalia García-Aranda, Zamira Vanessa Díaz-Riascos, Ramon González-Rioja, Jannik Nedergaard Pedersen, Jeppe Lyngsø, Josep Merlo-Mas, Edgar Cristóbal-Lecina, José Luis Corchero, Daniel Pulido, Patricia Cámara-Sánchez, Irina Portnaya, Inbal Ionita, Simó Schwartz, Jaume Veciana, Santi Sala, Miriam Royo, Alba Córdoba, Dganit Danino, Jan Skov Pedersen, Elisabet González-Mira, Ibane Abasolo, and Nora Ventosa. Impact of Chemical Composition on the Nanostructure and Biological Activity of α-Galactosidase-Loaded Nanovesicles for Fabry Disease Treatment, ACS Appl. Mater. Interfaces 2021, 13, 7, 7825–7838 ( https://doi.org/10.1021/acsami.0c16871).

Read More

A new european infrastructure will facilitate the transfer of nano-pharmaceuticals from the lab to the clinic

Launch of the cross-european PHOENIX project, which will provide a new infrastructure available to research laboratories, SMEs and start-ups to facilitate the transfer of nano-pharmaceuticals from the laboratory to clinical practice. PHOENIX will have a duration of 4 years and a total budget of 14.45 million euros. Two CSIC Institutes, ICMAB (CSIC) and INMA (CSIC-UNIZAR), and one CSIC spin-off, Nanomol Technologies, participate in the project, will count with the expertise of NANBIOSIS unit 6 (from CIBER-BBN and ICMAB-CSIC), led by Nora Ventosa.

PHOENIX is an innovation project funded by EU’s Horizon2020 Framework Programme aimed to provide services for the development, characterization, testing, safety assessment, scale-up, good-manufacturing-practice (GMPs) production and commercialization of nano-pharmaceuticals from the lab to the market, making them available to SMEs, startups, research laboratories and interested users.

A total of 11 partners from academia and industry located all across Europe have joined forces to create this “Open Innovation Test Bed” for nano-pharmaceuticals. Two CSIC institutes participate in this initiative: the Institute of Nanoscience and Materials of Aragón (INMA, CSIC-UNIZAR) and the Institute of Materials Science of Barcelona (ICMAB, CSIC), both groups members of the CIBER-BBN. Nanomol Technologies S.L., a growing SME spin-off from ICMAB-CSIC, is also partner of the project.

PHOENIX, which is coordinated by Luxembourg Institute of Science and Technology (LIST), supported by the german SME MyBiotech in scientific coordination, will have a duration of 48 months starting on 1 March 2021 with a total budget of €14.45 million and a requested EU contribution of €11.1 million.

Open Innovation Test Bed for nano-pharmaceuticals

Nano-pharmaceuticals are drugs that use nanotechnology (the use of matter on an atomic, molecular, and supramolecular scale for industrial purposes) in some form to achieve enhanced drug products. For example, contrast agents are used in the form of nanoparticles rather than a molecule because nanoparticles are more stable and can stay longer in blood. Another example could be that a nanoparticle is used as a nanocarrier to encapsulate the drug substance and protect it while enhancing adsorption and biodistribution, or to target the drug to specific tissues or organs.

Nano-pharmaceuticals have the potential to drive the scientific and technological uplift, offering great clinical and socioeconomic benefits to society in general, industry, and patients. Nevertheless, affordable and advanced testing, manufacturing facilities and services for novel nano-pharmaceuticals are main prerequisites for successful implementation of these advances to further enhance the growth and innovation capacity.

The establishment of current good manufacturing practices (GMPs) in nano-pharmaceutical production on a large scale is the key step to successfully transferring nano-pharmaceuticals from bench to bedside (from the lab to the patients). Due to the lack of resources to implement GMP manufacturing on site, the upscaling and production of innovative nano-pharmaceuticals is still challenging to the main players of EU nanomedicine market, start-ups and SMEs. To allow a successful implementation of nano-pharmaceuticals in the nanomedicine field, there is an urgent need to establish a science and regulatory-based Open Innovation Test Bed (OITB).

PHOENIX: key project in taking nano-pharmaceuticals from bench to bedside

The PHOENIX project aims to enable the seamless, timely and cost-friendly transfer of nano-pharmaceuticals from lab bench to clinical trials by providing the necessary advanced, affordable and easily accessible PHOENIX-OITB which will offer a consolidated network of facilities, technologies, services and expertise for all the technology transfer aspects from characterisation, testing, verification up to scale up, GMP compliant manufacturing and regulatory guidance.

PHOENIX-OITB will develop and establish new facilities and upgrade existing ones to make them available to SMEs, starts-up and research laboratories for scale-up, GMP production and testing of nano-pharmaceuticals, either based on small chemical molecules or biologicals The services and expertise provided by the OITB will include production and characterisation under GMP conditions, safety evaluation, regulatory compliance and commercialisation boost.

“Our goal is to create a new infrastructure at European level available for all research centres and laboratories, SMEs and start-ups, to facilitate the transfer of nano-pharmaceuticals from the lab to the clinical practice” explains Jesús Martínez de la Fuente, INMA-CSIC-UNIZAR researcher.

“The role of INMA and ICMAB is to generate new services, open to the public, to characterize nano-pharmaceuticals in rder to ensure their quality” affirms Nora Ventosa, ICMAB-CSIC/CIBER-BBN researcher and Director of NANBIOSIS unit 6 Biomaterial Processing and Nanostructuring Unit.

Project partners

The 11 partners that form the PHOENIX consortium are the Luxembourg Institute of Science and Technology (LIST, Luxembourg), MyBiotech (SME from Germany), Nanomol Technologies SL, LeanBio SL and Grace Bio SL (SMEs from Spain), Cenya Imaging B.V. (SME from The Netherlands), BioNanoNet Forschungsgesellschaft mbH (BNN, Austria), CSIC (INMA, CSIC-UNIZAR and ICMAB, CSIC), Institute for Medical Research and Occupational Health (IMROH, Croatia), Research Center Pharmaceutical Engineering GmbH (RCPE, Austria), and Topas Therapeutics GmbH (Germany).

More information:

Read More