+34 620 10 75 37info@nanbiosis.com

Posts Taged inclusion-bodies

A new smart drug that finds and kills metastasis cells could be applied in 23 types of cancer

Researchers of two CIBER-BBN Units of the ICTS NANBIOSIS  U18 Nanotoxicology Unit at Hospital Sant Pau. and U1, Protein Production Platform (PPP), at the  Institute of Biotechnology and biomedicine of the Autonomous University of Barcelona (IBBUAB), led by Prof Ramón Mangues, have developed a new drug that selectively removes metastatic stem cells, inducing a powerful metastasis prevention effect.

Besides the participation of the “NANBIOSIS” ICTS Units
U1 Protein Production Platform where Protein production was partially performed and U18 Nantoxicology Unit where Biodistribution studies were performed, all in vivo experiments were performed by the Unit 20 In Vivo Experimental Platform of CIBER in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN)

The researchers have ceated inclusion bodies of amyloid and nanostructured fibers that, when administered subcutaneously in mice, release soluble cytotoxic nanoparticles continuously. These nanoparticles are carriers of the exotoxin of Pseudomonas aeruginosa that manages to maintain a stable concentration of this nanomedicine in the blood and tissues. Dr. Mangues explains that “this new pharmaceutical form of subcutaneous administration for sustained release allows high doses of this nanopharmaceutical to be administered, at prolonged intervals (weeks in mice and probably months in humans) without toxicity at the injection site or in normal tissues, while generating a powerful antimetastatic effect. Apart from being controlled-release systems, these nanoparticles incorporate a ligand that interacts with the receptor (CXCR4), present at high levels in the membrane of metastatic stem cells capable of generating metastases (CMM CXCR4 +). Once the new pharmaceutical form is administered subcutaneously in mice with metastatic colorectal cancer, this ligand directs each nanoparticle released by this structure to the tumor tissues, increasing their uptake, to specifically internalize in the CXCR4 + CMMs and induce their selective destruction. “This effect achieves a notable reduction in tumor size in the colon while blocking the development of lymph node, lung, liver and peritoneal metastases, without appreciable uptake or toxicity in non-tumor tissues” continous the researchers.

The researchers estimate that this new therapeutic strategy will have a high clinical impact by reducing the requirement of its hospital administration, which most antitumor drugs have, and blocking metastatic dissemination, responding to an unmet clinical need. On the other hand, this new pharmaceutical form, which combines sustained release with targeting to the CXCR4 receptor, could be used in the treatment of at least 23 types of cancer that also express high levels of this receptor in tumor cells.

The new therapy offers an answer to the urgent medical need to inhibit the development of metastases, which represents the leading cause of death in cancer patients. The selective destruction of tumor and metastatic cells increases the therapeutic index of nanomedicine, obtaining a potent antimetastatic effect without generating associated adverse effects, which differentiates it from most of the currently used antitumor drugs.


Article of reference

María Virtudes Céspedes, Olivia Cano‐Garrido, Patricia Álamo, Rita Sala, Alberto Gallardo, Naroa Serna, Aïda Falgàs, Eric Voltà‐Durán, Isolda Casanova, Alejandro Sánchez‐Chardi, Hèctor López‐Laguna, Laura Sánchez‐García, Julieta M. Sánchez, Ugutz Unzueta, Esther Vázquez, Ramón Mangues, Antonio Villaverde. Engineering Secretory Amyloids for Remote and Highly Selective Destruction of Metastatic Foci Adv.Mater.2019, 1907348

https://doi.org/10.1002/adma.201907348

Read More

Artificial inclusion bodies for controlled drug release

Researchers from NANBIOSIS-CIBER-BBN have developed a new type of protein biomaterial that allows a continuous release over time of therapeutic proteins when administered subcutaneously in laboratory animals.

These results are the result of the stable scientific collaboration between the researchers of NANBIOSIS Units 1 Protein Production Platform (PPP)and 18 Nanotoxicology Unit, led by Toni Villaverde and Ramón Mangues at the Institute of Biotechnology and Biomedicine of the Autonomous University of Barcelona (IBB-UAB) and the Institut About the Hospital de Sant Pau and has had the participation of the Institute of Biological and Technological Research of the National University of Córdoba-CONICET, in Argentina

 “These structures, of a few micrometers in diameter, contain functional proteins that are released in a manner similar to the release of human hormones in the endocrine system,” says Antonio Villaverde. Ramón Mangues explains that “the new biomaterial mimics a common bacterial product in biotechnological processes called ‘inclusion bodies’, of pharmacological interest, which in this artificial version offers a wide range of therapeutic possibilities in the field of oncology and in any other field clinic that requires sustained release over time.” Researchers have used common enzymes in biotechnology as a model and a nanostructured bacterial toxin that targets metastatic cells of human colorectal cancer, which has been tested in animal models. “In this way we have managed to generate both immobilized catalysts and a new long-acting anti-tumor drug,” said the researchers responsible for the research.

The developed artificial protein granules, which had previously been proposed as ‘nanopills’ (tablets of therapeutic material on a nanoscopic scale), mimic bacterial inclusion bodies and offer enormous clinical potential in the field of vaccinology and as release systems Drug controlled.

“We have seen that natural inclusion bodies, administered as medicines, can generate unwanted immune responses due to the inevitable contamination with bacterial materials,” the researchers comment. However, in the new work, the development of artificial inclusion bodies with secretion capacity “avoids many of the regulatory problems associated with the potential development of bacterial nanopills, and offers a cross platform for obtaining functional components in cosmetics and in clinic” they add.

This work points to artificial inclusion bodies as a new exploitable category of biomaterials for biotechnological applications with a more simple manufacturing and clinical applications.

Reference article:
Julieta M. Sánchez, Hèctor López ‐ Laguna, Patricia Álamo, Naroa Serna, Alejandro Sánchez ‐ Chardi, Verónica Nolan, Olivia Cano ‐ Garrido, Isolda Casanova, Ugutz Unzueta, Esther Vazquez, Ramon Mangues, Antonio Villaverde Artificial Inclusion Bodies for Clinical Development

https: //doi.org/10.1002/advs.201902420

Read More