+34 620 10 75 37info@nanbiosis.com

U19. Clinical tests lab

U19. Clinical tests lab

U19-E07. Water purification system (Elix 3 de MILLIPORE)

Water purification system (Elix 3 de MILLIPORE)

Read More

U19-E06. AQT90 FLEX analyzer (RADIOMETER)

AQT90 FLEX analyzer (RADIOMETER).

Read More

U19-E04. Clinic auto-analyser (Metrolab 2300 de RAL)

Clinic auto-analyser (Metrolab 2300 de RAL)

Read More

U19-E03. Automatic coagulometer (AUTOCLOT SP de RAL)

Automatic coagulometer (AUTOCLOT SP de RAL)

Read More

U19-E02. Solid state thermostatic equipment 37 º C + – 0,1 º C with magnetic stirrer system, 15 reaction cubiletes and a reacive bottle

Solid state thermostatic equipment 37 º C + – 0,1 º C with magnetic stirrer system, 15 reaction cubiletes and a reacive bottle.

Read More

U19-E01. General Laboratory equipment

General Laboratory equipment:

  • Precision balance
  • pH-meter
  • Magnetic stirrer
  • TI LAZO Temperature IKA TC 3 (YELLOW LINE)
  • Rotary shaker
  • PGW Balance (ADAM)
  • Logger Temperature
  • Thermohygrometer
  • Freezer 2-8 ºC
Read More

U19-S01. Preclinical studies

Preclinical studies

This service is responsible for conducting regulatory preclinical studies for the pharmaceutical industry and interested companies. Among the studies that can be carried out are: in vivo toxicity studies, local and systemic tolerance and efficacy studies. Pharmacokinetic studies, dosage studies of test products and biocompatibility studies of new drugs and medical devices are also performed.

Customer benefits

These studies are carried out under strict quality regulations, certified with ISO-9001 and Good Laboratory Practices (GLP), quality standards that allow the production of high-precision results.
Therefore, preclinical studies can be carried out in compliance with the strict guidelines of regulatory agencies, ensuring the reliability and traceability of all results and tests carried out in their different services.

Target customer

The services offered may be of interest to different companies and laboratories that work within the pharmaceutical industry. Companies whose objective is to test possible candidates for molecules, drugs or medical devices.

References

  1. J Bote, et al. Novel ex-vivo database of a murine model of colorectal cancer using optical coherence tomography. Surg Endosc (2022) 36:S325–S674
  2. V Lucas-Cava, et al. Prostatic artery occlusion: Initial findings on pathophysiological response in a canine prostate model. Translational Andrology and Urology. Transl Androl Urol 2022.
  3. Soria F, et al. Heparin coating in biodegradable ureteral stents does not decrease bacterial colonization-assessment in ureteral stricture endourological treatment in animal model. Transl Androl Urol. 2021 Apr;10(4):1700-1710.
  4. Baez-Díaz C, et al. Microencapsulated Insulin-Like Growth Factor-1 therapy improves cardiac function and reduces fibrosis in a porcine acute myocardial infarction model. Sci Rep. 2020 Apr 28;10(1):7166.
  5. Moreno-Lobato, B, et al. Use of nanomedicine in preclinical wound healing studies. FarmaJournal; Salamanca T 4, N.º 1, (Feb 2019): 178.
  6. Picado Román, N, et al. Drugs most used in experimental animals in a Research Center. FarmaJournal; Salamanca T 4, N.º 1, (Feb 2019): 236.
  7. Moreno-Lobato B, et al. Analytical Validation Study of Hematological Parameters under Good Laboratory Practice Regulations in Different Laboratory Animal Species. Thromb Haemost Res. 2019; 3(1): 1018.
  8. Ballestín A, et al. A Pre-clinical Rat Model for the Study of Ischemia reperfusion Injury in Reconstructive Microsurgery. J Vis Exp. 2019 Nov 8;(153).
  9. R Blázquez , et al. Altered hematological, biochemical and immunological parameters in a porcine myocardial infarction model: predictive biomarkers for the severity of myocardial infarction. Veterinary Immunology and Immunopathology 205 (2018) 49–57.
  10. Vela FJ, et al. Evaluation of antigen-induced synovitis in a porcine model: Immunological, arthroscopic and kinetic studies. BMC Vet Res. 2017. Apr 7;13(1):93.
Read More

U19-S04.

Magistral formulation

The pharmaceutical formulation laboratory is enabled and equipped to store, formulate and reconstitute trial products for differents in vivo preclinical studies with strict quality standards. In addition to drug formulation for preclinical studies and its use in experimental animals. This formulation laboratory equipped to formulate, reconstitute and guarantee the correct storage of the test products used in studies.

Customer benefits

The laboratories include in the unit are certified with ISO-9001 and Good Laboratory Practices (GLP), strict quality standards that allow the production of high-precision results
Also, the studies can be performed under regulatory requirements too, since the performing institution is Certified for Good Laboratory Practices.
Therefore, preclinical studies and safety and efficacy studies in animal models can be carried out in compliance with the strict guidelines of regulatory agencies, ensuring the reliability and traceability of all results and tests carried out in their different services.

Target customer

The services offered in this unit may be of interest to different companies and laboratories that work within the pharmaceutical industry. Companies whose objective is to test possible candidates for molecules, drugs or medical devices. Both in previous legal preclinical studies and animal models of specific pathologies.

References

  1. J Bote, et al. Novel ex-vivo database of a murine model of colorectal cancer using optical coherence tomography. Surg Endosc (2022) 36:S325–S674
  2. V Lucas-Cava, et al. Prostatic artery occlusion: Initial findings on pathophysiological response in a canine prostate model. Translational Andrology and Urology. Transl Androl Urol 2022.
  3. Soria F, et al. Heparin coating in biodegradable ureteral stents does not decrease bacterial colonization-assessment in ureteral stricture endourological treatment in animal model. Transl Androl Urol. 2021 Apr;10(4):1700-1710.
  4. Baez-Díaz C, et al. Microencapsulated Insulin-Like Growth Factor-1 therapy improves cardiac function and reduces fibrosis in a porcine acute myocardial infarction model. Sci Rep. 2020 Apr 28;10(1):7166.
  5. Moreno-Lobato, B, et al. Use of nanomedicine in preclinical wound healing studies. FarmaJournal; Salamanca T 4, N.º 1, (Feb 2019): 178.
  6. Picado Román, N, et al. Drugs most used in experimental animals in a Research Center. FarmaJournal; Salamanca T 4, N.º 1, (Feb 2019): 236.
  7. Moreno-Lobato B, et al. Analytical Validation Study of Hematological Parameters under Good Laboratory Practice Regulations in Different Laboratory Animal Species. Thromb Haemost Res. 2019; 3(1): 1018.
  8. Ballestín A, et al. A Pre-clinical Rat Model for the Study of Ischemia reperfusion Injury in Reconstructive Microsurgery. J Vis Exp. 2019 Nov 8;(153).
  9. R Blázquez , et al. Altered hematological, biochemical and immunological parameters in a porcine myocardial infarction model: predictive biomarkers for the severity of myocardial infarction. Veterinary Immunology and Immunopathology 205 (2018) 49–57.
  10. Vela FJ, et al. Evaluation of antigen-induced synovitis in a porcine model: Immunological, arthroscopic and kinetic studies. BMC Vet Res. 2017. Apr 7;13(1):93.
Read More