+34 620 10 75 37info@nanbiosis.com

Singular

Singular

U8-S06. Encapsulation or fabrication of 3D strcutures via 3D printing.

Encapsulation or fabrication of 3D strcutures via 3D printing.

Fabrication of 3D structures using a dual extrusion 3D printer that delivers high-quality, composite-ready performance – in a smaller footprint

Customer benefits

Possibility to access to the 3D printing equipment in self-service mode to adapt the process to the customer needs.

Target customer

Research groups and SMEs

Read More

U20-S015. Cytotoxicity: proliferation, LDH, apoptosis and ROS

Read More

U20-S014. Hemocompatibility: hemolysis, platelet aggregation, plasma coagulation times and complement activation

Read More

U20-S013. Detection of microbial (bacterial and mycoplasma) contaminationpre

Read More

U29-S02. Modification of oligonucleotides. (Remote) OUTSTANDING

Modification of oligonucleotides

This service is dedicated to the custom synthesis of oligonucleotide conjugates including oligonucleotides carrying lipids, amino acids, peptides or carbohydrates. In addition, they may include other modifications such as phosphorothioate linkages, 2’-O-methyl-RNA, 2’-O-MOE-RNA, 2′-F-RNA, Locked nucleic acids (LNA), modified nucleotides. The oligonucleotides will be prepared in 1 micromol scale. In most cases, the preparation of the conjugates will require the preparation of oligonucleotides carrying reactive groups such as; amino or thiol groups, which will be subjected to a post-synthetic modification. Purification and characterization will include reversed-phase HPLC analysis and mass spectrometry (MALDI-TOF).

Modification of oligonucleotides during and post synthesis to meet user requirements:

  • Conjugation of oligonucleotides with fluorophores (fluoresceine, Cy3, Ct5, etc..) and other types of small molecules such as biotine, lipids.
  • Conjugation to peptides.
  • Phosphorothioate linkages
  • Modified backbones such as locked nucleic acids (LNA), 2’-O-alkyl-RNA, etc..
  • Modified nucleobases: 2-aminopurine, 5-methyl-dC, etc…
  • 5’, 3’-modifications such as 5’-, 3’-amino, 5’-, 3’-thiol, etc..

Customer benefits

The service benefits from the 40-years’ experience of the researchers participating in the service, with hundreds of scientific communications on improving the methodology used for the synthesis of modified oligonucleotides. This includes fatty acid derivatives, amino acids, cell penetrating peptides and carbohydrates not available from other services. In addition, the service can develop customized solutions for molecules not addressed in the bibliography.

Target customer

The primary audience are research groups and companies working on gene therapy and gene inhibition in the early stages of preclinical development.

References

1) “Aptamer-peptide conjugates as a new strategy to modulate human α-thrombin binding affinity”. Aviñó, A. et al. Biochim. Biophys. Acta (General subjects), 1863, 1610-1630 (2019).
2) “Synthesis of oligonucleotides carrying amino-lipid groups at the 3’-end for RNA interference studies”. Grijalvo, S. et al. J. Org. Chem., 75, 6806-6813 (2010).
3) “Synthesis and evaluation of 3’ oleyl-oligonucleotide conjugates as potential cellular uptake enhancers”. Navarro, N. et al. SYNLETT, in press (2024). doi: 10.1055/s-0042-1751528.

Read More

U29-S03. Special nucleotides for oligonucleotide synthesis. (Remote) OUTSTANDING

Special nucleotides for oligonucleotide synthesis

This service is dedicated to the custom synthesis of modified nucleotides such as nucleoside monophosphates or triphosphates as well as special phosphoramidites or functionalized solid supports functionalized with small molecules resistant to ammonia deprotection for the preparation of oligonucleotide conjugates.

Special nucleotides for oligonucleotide synthesis

For those services identified as outstanding, at least 20% of their capacity is open under competitive access. See Annex 1 of ACCESS PROTOCOL (provided by Nanbiosis) for details on % of openness for each service

Customer benefits

The service benefits from the 40-years’ experience of the researchers participating in the service with hundreds of scientific communications on improving the methodology used for the synthesis of modified oligonucleotides. This includes a range of modified nucleotides and terminal modifications not available in other services. In addition, the service can develop customized solutions for molecules not covered in the bibliography.

Target customer

The primary audience are research groups and companies involved in gene therapy, gene silencing and the development of nucleic acid-based diagnostic tools.

References

1) “Oligonucleotides containing 1’-aminomethyl or 1’-mercaptomethyl-2’-deoxy-D-ribofuranoses: Synthesis, purification, characterization and conjugation with fluorophores and lipids”. Martín-Nieves, V. et al. Bioconjugate Chem, 32, 350-366 (2021).
2) “Efficient bioactive oligonucleotide-protein conjugation for cell-targeted cancer therapy”. Aviñó, A. et al. Chemistry Open, 8, 382-387 (2019).
3) “Thioctic acid derivatives as building blocks to incorporate DNA oligonucleotides onto gold nanoparticles”. Pérez-Rentero, S. et al. Molecules, 19, 10495-10523 (2014).

Read More

U29-S01. Synthesis of oligonucleotides and characterization (On-site & Remote). OUTSTANDING

Synthesis of oligonucleotides and characterization

This service is dedicated to the custom synthesis of modified oligonucleotides including phosphorothioate linkages, 2’-O-methyl-RNA, 2’-O-MOE-RNA, 2′-F-RNA, Locked nucleic acids (LNA), modified nucleotides and several others. The oligonucleotides will be prepared on a 1 micromol scale. Purification and characterization will include reversed-phase HPLC analysis and mass spectrometry (MALDI-TOF).

Synthesis of oligonucleotides at various different scales (100 microg to 5 mg) and purification using HPLC and/or desalting.

Customer benefits

The service benefits from the 40-years’ experience of the researchers involved in the service, with hundreds of scientific communications on improving the methodology used for the synthesis of modified oligonucleotides. This expertise includes a range of modified nucleotides and terminal modifications that are not available in other services. In addition, the service can develop customized solutions for molecules not covered in the bibliography.

Target customer

The primary audience are research groups and companies involved in mutagenesis, gene therapy,  gene inhibition, the development of nucleic acid-based diagnostic tools, or the study of nucleic acid structure and nucleic acid-protein interaction.

References

1) “Detection of SARS-CoV-2 virus by Triplex Enhanced Nucleic Acid Detection Assay (TENADA)”, Aviñó, A., et al. Int. J. Mol. Sci., 23, 15258 (2022).
2) “Properties of parallel tetramolecular G-quadruplex carrying N-acetylgalactosamine as potential enhancers for oligonucleotide delivery to hepatocytes”. Clua, A. et al. Molecules, 27, 3944, (2022).
3) “Chemical modifications in nucleic acids for therapeutic and diagnostic applications”. Fàbrega, C., Aviñó, A., Eritja, R. The Chemical Record, 22, e202100270 (2022).

Read More

U19-S02.

Animal Model Studies

This service is responsible for conducting regulatory studies for the pharmaceutical industry and interested companies. The safety and efficacy studies are carried out using small and large animal models for the different organic systems, also including animal models of different pathologies.

Customer benefits

These studies are carried out under strict quality regulations, certified with ISO-9001 and Good Laboratory Practices (GLP), quality standards that allow the production of high-precision results.
Therefore, safety and efficacy studies in animal models can be carried out in compliance with the strict guidelines of regulatory agencies, ensuring the reliability and traceability of all results and tests carried out in their different services.

Target customer

The services offered in this unit may be of interest to different companies and laboratories that work within the pharmaceutical industry. Companies whose objective is to test possible candidates for molecules, drugs or medical devices in animal models of specific pathologies.

References

  1. J Bote, et al. Novel ex-vivo database of a murine model of colorectal cancer using optical coherence tomography. Surg Endosc (2022) 36:S325–S674
  2. V Lucas-Cava, et al. Prostatic artery occlusion: Initial findings on pathophysiological response in a canine prostate model. Translational Andrology and Urology. Transl Androl Urol 2022.
  3. Soria F, et al. Heparin coating in biodegradable ureteral stents does not decrease bacterial colonization-assessment in ureteral stricture endourological treatment in animal model. Transl Androl Urol. 2021 Apr;10(4):1700-1710.
  4. Baez-Díaz C, et al. Microencapsulated Insulin-Like Growth Factor-1 therapy improves cardiac function and reduces fibrosis in a porcine acute myocardial infarction model. Sci Rep. 2020 Apr 28;10(1):7166.
  5. Moreno-Lobato, B, et al. Use of nanomedicine in preclinical wound healing studies. FarmaJournal; Salamanca T 4, N.º 1, (Feb 2019): 178.
  6. Picado Román, N, et al. Drugs most used in experimental animals in a Research Center. FarmaJournal; Salamanca T 4, N.º 1, (Feb 2019): 236.
  7. Moreno-Lobato B, et al. Analytical Validation Study of Hematological Parameters under Good Laboratory Practice Regulations in Different Laboratory Animal Species. Thromb Haemost Res. 2019; 3(1): 1018.
  8. Ballestín A, et al. A Pre-clinical Rat Model for the Study of Ischemia reperfusion Injury in Reconstructive Microsurgery. J Vis Exp. 2019 Nov 8;(153).
  9. R Blázquez , et al. Altered hematological, biochemical and immunological parameters in a porcine myocardial infarction model: predictive biomarkers for the severity of myocardial infarction. Veterinary Immunology and Immunopathology 205 (2018) 49–57.
  10. Vela FJ, et al. Evaluation of antigen-induced synovitis in a porcine model: Immunological, arthroscopic and kinetic studies. BMC Vet Res. 2017. Apr 7;13(1):93.

Read More

U10-S09. Characterization and development of pulmonar formulations (On-site&Remote) OUTSTANDING

Characterization and development of pulmonar formulations

Read More

U10-S08. 3D bio-impression of scaffolding for regenerative medicine (On-site&Remote) OUTSTANDING

3D bio-impression of scaffolding for regenerative medicine

Read More