+34 620 10 75 37info@nanbiosis.com

Services

Services

U24-S01 Evaluation of therapies for cardiovascular disease

Evaluation of therapies for cardiovascular disease

With cardiovascular disease consistently representing a major cause of death worldwide, a platform to perform experimental studies testing the efficacy of candidate therapies for CVD is necessary.
The methodology implemented in NANBIOSIS Unit 24 for this purpose has been tested and validated in several papers (Refs below). In brief, CVD is induced in a relevant large animal model (i.e. myocardial infarction and swine) using image guided surgical techniques (i.e. percutaneous balloon occlusion of a coronary artery for a pre-determined amount of time). Once the model is established, the therapy under study is applied and the experimental subjects followed up for a fixed length of time. Clinical grade imaging (i.e. Cardiac Magnetic Resonance including delayed enhancement) and laboratory techniques are used to follow up and document the evolution of the induced CVD. Generally, image acquisition is performed at baseline and serially during the predetermined duration of the study in order to study the effect of the therapy on measurable endpoints (i.e. left ventricular ejection fraction) to document improvement.

Customer benefits

The studies are tailored to the needs of each specific candidate intervention, can be implemented with different follow-up times and can be performed under regulatory requirements, since the performing institution is Certified for Good Laboratory Practices.
Thus the Service can be provided as proof-of-concept studies, full safety and efficacy or under GLPs to meet regulatory agencies’ guidelines and assure clinical translation, so that the customers can take their therapy to a clinical trial faster and more efficiently, thanks to the full range of capabilities offered in this service.

Target customer

The offered service can be of interest to scientists from academia willing to test a possible CVD therapy, including biologicals, small companies that have a candidate molecule which is promising enough to warrant large animal trials or big pharma willing to undergo GLP studies to commercialize their product.

References

  • Aimo A et al. Colchicine added to standard therapy further reduces fibrosis in pigs with myocardial infarction. J Cardiovasc Med (Hagerstown). 2023 Nov 1;24(11):840-846. doi: 10.2459/JCM.0000000000001554. Epub 2023 Sep 29. PMID: 37773884.
  • Österberg K et al. Personalized tissue-engineered veins – long term safety, functionality and cellular transcriptome analysis in large animals. Biomater Sci. 2023 May 30;11(11):3860-3877. doi: 10.1039/d2bm02011d. PMID: 37078624.
  • Pulido M et al. Transcriptome Profile Reveals Differences between Remote and Ischemic Myocardium after Acute Myocardial Infarction in a Swine Model. Biology (Basel). 2023 Feb 21;12(3):340. doi: 10.3390/biology12030340. PMID: 36979032; PMCID: PMC10045039.
  • Blanco-Blázquez V et al Intracoronary Administration of Microencapsulated HGF in a Reperfused Myocardial Infarction Swine Model. J Cardiovasc Dev Dis. 2023 Feb 17;10(2):86. doi: 10.3390/jcdd10020086. PMID: 36826582; PMCID: PMC9960949.
  • Arenal Á et al. Effects of Cardiac Stem Cell on Postinfarction Arrhythmogenic Substrate. Int J Mol Sci. 2022 Dec 19;23(24):16211. doi: 10.3390/ijms232416211. PMID: 36555857; PMCID: PMC9781106.
  • Báez-Díaz C et al. Intrapericardial Delivery of APA-Microcapsules as Promising Stem Cell Therapy Carriers in an Experimental Acute Myocardial Infarction Model. Pharmaceutics. 2021 Nov 1;13(11):1824. doi: 10.3390/pharmaceutics13111824. PMID: 34834235; PMCID: PMC8626005.
  • Crisóstomo V et al. The epicardial delivery of cardiosphere derived cells or their extracellular vesicles is safe but of limited value in experimental infarction. Sci Rep. 2021 Nov 12;11(1):22155. doi: 10.1038/s41598-021-01728-y. PMID: 34772964; PMCID: PMC8590017.
  • Prat-Vidal C et al. Intracoronary Delivery of Porcine Cardiac Progenitor Cells Overexpressing IGF-1 and HGF in a Pig Model of Sub-Acute Myocardial Infarction. Cells. 2021 Sep 28;10(10):2571. doi: 10.3390/cells10102571. PMID: 34685551; PMCID: PMC8534140.
  • Ziani K et al. Characterization of encapsulated porcine cardiosphere-derived cells embedded in 3D alginate matrices. Int J Pharm. 2021 Apr 15;599:120454. doi: 10.1016/j.ijpharm.2021.120454. Epub 2021 Mar 5. PMID: 33676988.
  • Rossello X et al. CIBER-CLAP (CIBERCV Cardioprotection Large Animal Platform): A multicenter preclinical network for testing reproducibility in cardiovascular interventions. Sci Rep. 2019 Dec 30;9(1):20290. doi: 10.1038/s41598-019-56613-6. PMID: 31889088; PMCID: PMC6937304.
  • Crisostomo V et al. Dose-dependent improvement of cardiac function in a swine model of acute myocardial infarction after intracoronary administration of allogeneic heart-derived cells. Stem Cell Res Ther. 2019 May 31;10(1):152. doi: 10.1186/s13287-019-1237-6. PMID: 31151405; PMCID: PMC6544975.
Read More

U20-S08. Immunotoxicity assays (On-site&Remote) OUTSTANDING

Immunotoxicity assays

Read More

U20-S07. In vivo PK/PD assays (Remote) OUTSTANDING

In vivo PK/PD assays

Read More

U20-S06. In vivo ADME and biodistribution assays (Remote) OUTSTANDING

In vivo ADME and biodistribution assays

Read More

U2-S08. Inmunochemical methods development

Inmunochemical methods development

The service offers custom tailored immunoassay development. It involves designing and optimizing assays for detecting specific analytes (such as proteins, antibodies, or other biomolecules) in biological samples. The service includes identifying necessary reagents, establishing assay parameters, and validating the assay’s performance.

Customer benefits

  • Tailored Solutions: By utilizing our custom tailored immunoassay development service, customers gain access to highly specialized expertise and resources, resulting in the creation of assays optimized for their unique requirements.
  • Enhanced Sensitivity: The service ensures optimal sensitivity, allowing for the detection of analytes at low concentrations.
  • Time and Cost Savings: Outsourcing immunoassay development to experts saves time and resources compared to in-house development.
  • Quality Assurance: Rigorous validation ensures reliable results, enhancing confidence in research outcomes.

Target customer

  • Research Institutions: Universities, research centers, and laboratories engaged in biomedical research.
  • Biotech Companies: Organizations involved in drug discovery, diagnostics, and therapeutic development.
  • Pharmaceutical Companies: Those working on antibody-based therapies or vaccines.
  • Healthcare Providers: Hospitals and clinics conducting specialized research.
  • Food & Environmental Quality Control Companies: Entities involved in:
    • Food Contaminant Detection: Developing antibody-based
      tests for identifying foodborne pathogens and toxins.
    • Environmental Contaminant Detection: Creating antibody-based assays for detecting environmental pollutants in air, water, and soil.

Additional information

Selected references:

  • G. Colom, A. Hernández-Albors, J. Barallat, A. Galan, A. Bayes-Genis, J.-P. Salvador, M.-P. Marco. A multiplexed immunochemical microarray for the determination of cardiovascular disease biomarkers. Microchim. Acta, 191, 54, 2023.
  • C. Adrover-Jaume, A. Clemente, B. Rodríguez-Urretavizcaya, L. Vilaplana, M.-Pilar Marco, E. Rojo-Molinero, A. Oliver, R. de la Rica. A paper biosensor for overcoming matrix effects interfering with the detection of sputum pyocyanin with competitive immunoassays. Microchim acta, 190, 441, 2023.
  • E. Montagut, J. Raya, M.-T. Martín Gómez, L. Vilaplana, B. Rodríguez- Urretavizcaya, M.-P. Marco. An Immunochemical Approach to detect the Quorum Sensing-Regulated Virulence Factor 2-Heptyl-4- Quinoline N-Oxide (HQNO) produced by Pseudomonas aeruginosa Clinical Isolates. Microbiol. Spect., 10(4), 1-12, 2022.
  • E. Montagut, G. Acosta, F. Albericio, M. Royo, G. Godoy-Tena, A. Lacoma, C. Prat, J.-P. Salvador, M.-P. Marco. Direct Quantitative Immunochemical Analysis of the Autoinducer Peptide IV (AIP-IV) for Diagnosing and Stratifying Staphylococcus aureus infections. ACS Infect. Dis., 8(3), 645-656, 2022.
  • B. Rodriguez-Urretavizcaya, N. Pascual, C. Pastells, M. T. Martin-Gomez, Ll. Vilaplana, M.-P. Marco. Diagnostic and Stratification of Pseudomonas aeruginosa Infected Patients by Immunochemical Quantitative Determination of Pyocyanin from Clinical Bacterial Isolates. Frontiers in Cell. Infect. Microbiol., 11, 786929, 2021. DOI: 10.3389/fcimb.2021.786929
Read More

U2-S07. Antibody purification

Antibody purification

Antibody purification involves the selective enrichment or specific isolation of antibodies from various sources, such as serum (for polyclonal antibodies), or cell culture supernatant (for monoclonal antibodies).

The main methods used for antibody purification are:

  • Physicochemical Fractionation: This method includes differential precipitation, size-exclusion, or ion exchange chromatography, based on size, charge, or other shared chemical characteristics It separates proteins that includes the immunoglobulins (antibodies) based on size, charge, or other shared chemical characteristics
  • Class-Specific Affinity: In this approach, specific antibody classes (e.g., IgG) are bound to solid phases using immobilized biological ligands (such as proteins A or G). This method purifies all antibodies of the target class without considering antigen specificity.
  • Antigen-Specific Affinity: Here, only antibodies in a sample that bind to a particular antigen are purified. Affinity chromatography is performed using a column packed with immobilized antigen (the same antigen used for immunization). Only antibodies that bind to the antigen are isolated. This method provides a higher yield of antigen-specific antibodies than Protein A/G affinity chromatography, though the total amount of recovered antibodies is lower.

Customer benefits

  • High Purity: Antibody purification ensures that the isolated antibodies are of high purity, minimizing contamination by other proteins.
  • Specificity: By using antigen-specific affinity purification, researchers obtain antibodies that specifically recognize their target antigen.
  • Consistent Results: Purified antibodies lead to more consistent and reliable experimental results.
  • Diagnostic and Therapeutic Applications: Purified antibodies are essential for diagnostic assays, therapeutic development, and research applications.
  • Quality: We operate under ISO 9001 quality standards, ensuring consistent, reliable antibody production.

Target customer

  • Research Institutions: Universities, research centers, and laboratories engaged in biomedical research.
  • Biotech Companies: Organizations involved in drug discovery, diagnostics, and therapeutic development.
  • Pharmaceutical Companies: Those working on antibody-based therapies or vaccines.
  • Healthcare Providers: Hospitals and clinics conducting specialized research.
  • Food & Environmental Quality Control Companies: Entities involved in:
    • Food Contaminant Detection: Developing antibody-based tests for identifying foodborne pathogens and toxins.
    • Environmental Contaminant Detection: Creating antibody-based assays for detecting environmental pollutants in air, water, and soil.

Additional information

Selected references:

  • Giovanna Roncador; Pablo Engel; Lorena Maestre; et al; Alison H.Banham., Nuria Pascual 2016. The European antibody network’s practical guide to finding and validating suitable antibodies for research. mAbs. Taylor & Francis Online. 8-1, pp.27-36.
  • B. Rodriguez-Urretavizcaya, N. Pascual, C. Pastells, M. T. Martin-Gomez, Ll. Vilaplana, M.-P. Marco. Diagnostic and Stratification of Pseudomonas aeruginosa Infected Patients by Immunochemical Quantitative Determination of Pyocyanin from Clinical Bacterial Isolates. Frontiers in Cell. Infect. Microbiol., 11, 786929, 2021. DOI: 10.3389/fcimb.2021.786929
Read More

U2-S06. In vitro antibody production

In vitro antibody production

We perform the production of monoclonal antibodies in vitro.
Hybridoma cells are first expanded in culture flask or high density culture devices (for larger amounts of antibody) to get the optimal cell density needed for the production.
The classical medium of production includes fetal calf serum (ultralow IgG, FCS) but our expertise allows us to provide a completely customized service according to your needs, without using FCS.
Supernatant containing the monoclonal antibodies is then periodically collected until the expected quantity of antibodies is obtained.

Depending on the nature of the sample, the expected antibody concentrations are for :­

  • Culture in flask: from 5 to 20 µg antibody/mL supernatant
  • ­ Culture in high density device : up to 1 mg antibody/mL supernatant

Customer benefits

  • Customization: The service can be tailored to meet the specific needs of each customer, allowing for personalized antibody production without using fetal calf serum (FCS).
  • Scalability: The service can accommodate both flask cultures and high-density devices, providing flexibility for different antibody quantities.
  • ISO 9001 Certification: We operate under ISO 9001:2015 quality standards, ensuring consistent and reliable antibody production.

Target customer

  • Research Institutions: Universities, research centers, and laboratories engaged in biomedical research.
  • Biotech Companies: Organizations involved in drug discovery, diagnostics, and therapeutic development.
  • Pharmaceutical Companies: Those working on antibody-based therapies or vaccines.
  • Healthcare Providers: Hospitals and clinics conducting specialized research.
  • Food & Environmental Quality Control Companies: Entities involved in:
    • Food Contaminant Detection: Developing antibody-based tests for identifying foodborne pathogens and toxins.
    • Environmental Contaminant Detection: Creating antibody-based assays for detecting environmental pollutants in air, water, and soil.

Additional information

Selected references:

  • Giovanna Roncador; Pablo Engel; Lorena Maestre; et al; Alison H.Banham., Nuria Pascual 2016. The European antibody network’s practical guide to finding and validating suitable antibodies for research. mAbs. Taylor & Francis Online. 8-1, pp.27-36
  • Rodriguez-Urretavizcaya, N. Pascual, C. Pastells, M. T. Martin-Gomez, Ll. Vilaplana, M.-P. Marco. Diagnostic and Stratification of Pseudomonas aeruginosa Infected Patients by Immunochemical Quantitative Determination of Pyocyanin from Clinical Bacterial Isolates. Frontiers in Cell. Infect. Microbiol., 11, 786929, 2021. DOI: 10.3389/fcimb.2021.786929

Read More

U2-S05. Monoclonal Antibody development

Monoclonal Antibody development

To develop customized monoclonal antibodies, we adapt our protocols at each critical stage of antibody production. This includes designing the antigen, immunization protocol, and screening design of hybridoma cell supernatants. The initial step involves immunizing mice or rats with a specific antigen. We can develop monoclonal antibodies against various antigen types, such as proteins, peptides, small molecules, or cells. The immunization process typically spans 10-12 weeks. The animal with the most robust immune response undergoes a final immunization to stimulate antibody-producing cells. Spleen cells are isolated and fused with immortal myeloma cell lines to create hybridoma cells. The chosen hybridoma clones are then subcloned to ensure cell stability and maintain their monoclonal characteristics. Finally, the isolated cells are expanded and cryopreserved.

Customer benefits

  • Versatility: Monoclonal antibodies can be used in diagnostics, therapeutics, and research.
  • Customization: Protocols can be adapted to meet specific needs
  • Quality Assurance: Our processes adhere to the ISO 9001 quality requirements.

Target customer

  • Organizations involved in research and development, pharmaceutical companies, academic institutions, and diagnostic laboratories benefit from monoclonal antibody development.
  • Researchers studying diseases, drug targets, and immune responses rely on mAbs for their work.

Additional information

Monoclonal antibody development workflow

Selected references:

  • Giovanna Roncador; Pablo Engel; Lorena Maestre; et al; Alison H.Banham., Nuria Pascual 2016. The European antibody network’s practical guide to finding and validating suitable antibodies for research. mAbs. Taylor & Francis Online. 8-1, pp.27-36
  • Rodriguez-Urretavizcaya, N. Pascual, C. Pastells, M. T. Martin-Gomez, Ll. Vilaplana, M.-P. Marco. Diagnostic and Stratification of Pseudomonas aeruginosa Infected Patients by Immunochemical Quantitative Determination of Pyocyanin from Clinical Bacterial Isolates. Frontiers in Cell. Infect. Microbiol., 11, 786929, 2021. DOI: 10.3389/fcimb.2021.786929
Read More

U2-S04. Polyclonal Antibody Production

Polyclonal Antibody Production

Firstly, your project is discussed with our team, we help you to make the right decisions and personalize the process according to your goals. For the production of polyclonal antibodies, we select New Zealand white rabbits. Additionally, we offer the development of polyclonal antibodies in mice and rats.
We can generate policlonal antibodies towards a variety of antigens including small molecules, peptides, proteins, and cells.
Our standard immunization protocol includes monthly inoculations with Freund’s adjuvant over a 6-month period. To assess immune response progress, blood samples are taken 10 days after the second inoculation to obtain serum and determine antibody titers using ELISA. Preimmune serum is collected before the first injection for controls. At the end of the process, complete blood collection from the animal is performed surgically under anesthesia, resulting in 50-70 mL of hyperimmune serum per animal. The service provides 5 mL of bleed serum from each test for screening in customer labs.
We can follow your personalized immunization program in addition to our well-established ones.

Customer benefits

  • Scientific Consultation: We provide thorough consultation before the project begins.
  • Customized Project Proposals: We tailor project proposals to meet your specific requirements.
  • Flexible Workflow: Adjustments can be made to the workflow based on results and your specific requests.

Target customer

Organizations involved in research and development, particularly those seeking reliable and customized polyclonal antibody development services, will find our offering essential for their scientific endeavors.

Additional information

Selected references:

  • E. Montagut, J. Raya, M.-T. Martín Gómez, L. Vilaplana, B. Rodríguez-Urretavizcaya, M.-P. Marco. An Immunochemical Approach to detect the Quorum Sensing-Regulated Virulence Factor 2-Heptyl-4-Quinoline N-Oxide (HQNO) produced by Pseudomonas aeruginosa Clinical Isolates. Microbiol. Spect., 10(4), 1-12, 2022
  • E. Montagut, G. Acosta, F. Albericio, M. Royo, G. Godoy-Tena, A. Lacoma, C. Prat, J.-P. Salvador, M.-P. Marco. Direct Quantitative Immunochemical Analysis of the Autoinducer Peptide IV (AIP-IV) for Diagnosing and Stratifying Staphylococcus aureus infections. ACS Infect. Dis., 8(3), 645-656, 2022.
  • ­G. Colom, J.-P. Salvador, G. Acosta, M. Royo, M.-P. Marco. Competitive ELISA for N-Terminal pro-Brain Natriuretic Peptide (NT-proBNP) determination in human plasma. Analyst, 145, 6719-6727, 2020.
Read More

U2-S03. Preparation of Bioconjugates and Molecular Probes

Preparation of Bioconjugates and Molecular Probes

The preparation of bioconjugates and molecular probes involves a diverse array of techniques and strategies aimed at functionalizing biomolecules for various applications. This process encompasses the labeling of antibodies, haptenized proteins, and enzymes, as well as the biotinylation and fluorescent labeling of probes, and the conjugation of biomolecules with nanoparticles and other entities.

Customer benefits

  • To develop antibodies against small molecules (preparation of immunization bioconjugate)
  • Enhanced Functionality: Bioconjugation allows for specific binding of biomolecules, such as antibodies or peptides, to other entities like molecular probes or nanoparticles. This expands the applications and functionalities of biomolecules.
  • Improved Sensitivity and Specificity: Bioconjugates can enhance the sensitivity and specificity of detection techniques, such as immunohistochemistry or flow cytometry.
  • Diverse Applications: Bioconjugates find application in research, diagnostics, and therapy, benefiting research laboratories, hospitals, and pharmaceutical companies.

Target customer

  • Researchers and Scientists: Satisfy the need to label biomolecules for research studies.
  • Pharmaceutical and Biotechnology Companies: For creating therapeutic bioconjugates, imaging markers or bioconjugates for immunizations of non-immunogenic small molecules, between other.

Additional information

Selected references:

  • E. Montagut, J. Raya, M.-T. Martín Gómez, L. Vilaplana, B. Rodríguez-Urretavizcaya, M.-P. Marco. An Immunochemical Approach to detect the Quorum Sensing-Regulated Virulence Factor 2-Heptyl-4-Quinoline N-Oxide (HQNO) produced by Pseudomonas aeruginosa Clinical Isolates. Microbiol. Spect., 10(4), 1-12, 2022.
  • B. Rodriguez-Urretavizcaya, N. Pascual, C. Pastells, M. T. Martin-Gomez, Ll. Vilaplana, M.-P. Marco. Diagnostic and Stratification of Pseudomonas aeruginosa Infected Patients by Immunochemical Quantitative Determination of Pyocyanin from Clinical Bacterial Isolates. Frontiers in Cell. Infect. Microbiol., 11, 786929, 2021. DOI: 10.3389/fcimb.2021.786929.
  • J. Marrugo-Ramírez, M. Rodríguez-Núñez, M.-P Marco, M. Mir, J. Samitier. Kynurenic Acid Electrochemical Immunosensor: Blood-Based Diagnosis of Alzheimer’s Disease. Biosensors, 11(1), 20, 2021.
  • E. J. Montagut, Ll. Vilaplana, M.T. Martin-Gómez, M.-P. Marco. A High Throughput Immunochemical Method to Assess 2-Heptyl-4-Quinolone Quorum Sensing Molecule as Potential Biomarker. ACS Infect. Dis., 6(12), 3237-3246, 2020.
  • M. Broto, R. McCabe, R. Galve, M.-P. Marco. A high-specificity immunoassay for the therapeutic drug monitoring of ciclophosphamide. Analyst, 144, 5172-5178, 2019.
Read More