+34 620 10 75 37info@nanbiosis.com

News U9

News U9

Ignacio García and Javier Bonet present their work on the CADENCE project in a one-minute video

Ignacio García and Javier Bonet, researchers from the Nanoporous Films and Particles (NFP) group and Nanbiosis U9 Synthesis of Nanoparticles Unit of the CIBER-BBN and the Institute of Nanoscience and Materials Science at the University of Zaragoza have presented their work on the CADENCE project in a video of a minute of duration that has been submitted to the #QueSigalaCiencia scientific dissemination contest promoted by the CIBER-BBN.

#QueSigaLaCiencia is a campaign on social networks that wants to explain to society, from an optimistic perspective, the importance of research and the work carried out by the research staff of the CIBER. The call -associated with the campaign- has had a high participation of the groups, who have presented 69 videos from all the scientific areas of the center. Researchers took on the challenge of telling their research in one minute. The works presented in the #QueSigaLaCiencia call have the possibility of opting for the prize that the public will give through Twitter (highest number of likes).

Their research work in the project CADENCE consists of designing and manufacturing nanopharmaceuticals that will fight cancer, not only in a more effective way, but also in a more selective way , avoiding damaging healthy cells. “By striking the tumor with light, which, for example, comes from a laser, the particles created by these researchers are capable of creating toxic substances for the cancer cell and, in addition, eliminating essential nutrients for the tumor to continue its growth ·.

The work carried out in NANBIOSIS is recognized by these researchers as “fundamental to continue innovating, advancing and providing solutions to different problems”.

CADENCE is a European Project (Catalytic Dual-Function Devices Against Cancer) that aims for a breakthrough in cancer therapy by developing a new therapeutic concept. The central hypothesis is that a growing tumor can be treated as a special type of reactor in which reaction conditions can be tailored to achieve two objectives: i) molecules essential to tumor growth are locally depleted and ii) toxic, short-lived products are generated in situ

Read More

NANBIOSIS participation in the Technology and business Forum “Technological challenges derived from COVID-19”

The pandemic has led companies and researchers to reorient their plans and projects to meet the demands of society.

Different examples of these new challenges will be seen at the next Technology and Business Forum on Thursday, December 10, covering from new tissues, better masks, diagnostic tests, epidemiological models and clinical equipment … All this, from an analysis both from the perspective industrial and research.

The Technological and Business Forum is organized by the Aragón Engineering Research Institute (I3A), the SAMCA Chair of Technological Development, CEOE-Aragón and the Zaragoza Chamber. On this occasion, it will be held online and it will be an opportunity to talk about technologies and COVID-19, to consider the future after this pandemic, given the impact it has had on society and the economy.

At 12:00 the session on “Contributions from research to different COVID challenges· is scheduled, in which, M. Pilar Lobera. researcher at NANBIOSIS U9 Synthesis of Nanoparticles Unit (from CIBER-BBN and- Institute of Nanoscience and Materials of Aragon -INMA- talks on “Challenges for respiratory protection: types of membranes“·
Moderator: Pablo Laguna, Scientific Director of NANBIOSIS U27 High Performance Computing and Director of the SAMCA Chair of Technological Development and I3A

Read More

Jesús Santamaría, Scientific Director of NANBIOSIS Unit 9, candidate to the Rectorate of the University of Zaragoza

Jesús SantamaríaScientific Director of NANBIOSIS U9, Synthesis of Nanoparticles Unit, runs for the elections to the Rectorate of the University of Zaragoza.

Jesús Santamaría Ramiro, professor in the Department of Chemical Engineering and Environmental Technologies, at the Faculty of Sciences, has presented his candidacy to the Rectorate of the University of Zaragoza this week.

The opinion group Proyecto Unizar, the germ of this candidacy, has also been presented. Proyecto Unizar, which motto is “Another University is possible” includes more than 60 members of the university community and more than a hundred supporters, among them, several members of CIBER-BBN NANBIOSIS Units in Zaragoza University,-U27 High Performance Computing and U13 Tissue & Scaffold Characterization Unit. besides NANBIOSIS Unit 9.

As of November 9, the program of Proyecto Unizar will be public through its website, made up of more than 400 actions aimed at substantially improving the University of Zaragoza.

Elections will be held on November 24 by electronic vote. If a second round is necessary, it will take place on December 10.

Read More

The University of Zaragoza, in the elite of the 500 best universities in the world

The Academic Ranking of World Universities (ARWU), known as
Shanghai Ranking, which was made public on August 15, once again places the University of Zaragoza among the elite of the 500 best universities in the world.

This indicator organizes up to 20,000 university centers worldwide. Among the keys that have been able to positively influence the results of the research, according to the Vice Chancellor for Prospect, Sustainability and Infrastructure of the University of Zaragoza, Francisco Serón, are the increase in public campus funding for four years as well as the quality of their Scientists.

The University of Zaragoza houses three of NANBIOSIS Units:

U9 Synthesis of Nanoparticles Unit, led by Jesús Santamaría and Gema Martínez

U13 Tissue & Scaffold Characterization Unit, led by Miguel Ángel Martínez Barca and Fany Peña

U27 High Performance Computing , led by Pablo Laguna

Since 2003, every August, the Academic Ranking of World Universities (ARWU), known as “Shanghai Ranking,” is published, one of the international reference studies to compare higher education institutions. The ranking selects the 1,000 best educational institutions from a global point of view, among the 20,000 higher education centers that exist.

It is possibly the most famous and most recognized university analysis that values the quality of institutions in the generation of knowledge. The research community respects the results of these rankings because they are based on objective data and their classification is reproducible.

Source:
https://www.aragondigital.es/2019/08/15/la-uz-en-la-elite-de-las-500-mejores-universidades-del-mundo-segun-el-ranking-de-shanghai/

Read More

Biocidal releasing dressings of natural origin to treat topical wounds and avoid antibiotic resistance

Researchers of NANBIOSIS U9 Synthesis of Nanoparticles Unit, of the CIBER-BBN at the University of Zaragoza, use thymol as a natural biocide, a component present in the essential oils of thyme and oregano, thus fighting against the predictions that in 2050 there will be more deaths from infections associated with antibiotic-resistant bacteria than from cancer.

Some topical wounds caused by burns, by surgical procedures, diabetic foot ulcers, fistulas, pressure ulcers, etc. they can become infected and become chronic, rendering current treatments ineffective. Currently, the devitalized tissue is removed, the area is cleaned, it is drained and depending on the microbial presence present (fungi and / or bacteria) a topical antimicrobial treatment is used. However, in many cases it is inefficient, in addition the use of antibiotics favors the potential development of resistance

Researchers of the NFP group of the CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) belonging to the University Institute in Nanoscience of Aragon (INA) of the University of Zaragoza, which coordinates unit 9 of NANBIOSIS, have developed biocide-releasing dressings of origin natural to avoid bacterial resistance to antibiotics.
Specifically, thymol has been used as a natural biocide, which is a component present in the essential oils of thyme and oregano. Said dressings have been validated in bacterial cultures and also in animal experiments showing that they are capable of reducing bacterial infections without harming skin cells (fibroblasts and keratinocytes).

Reducing bacterial load without damaging adjacent tissue

The team of researchers, led by Silvia Irusta and Manuel Arruebo, together with Gracia Mendoza (currently at the Instituto de Investigación Sanitaria de Aragón (IIS Aragón), in collaboration with the Lluís Luján group of the Veterinary School, deliberately infected a wound topical created in the animal model with Staphylococcus aureus, a common pathogen in cutaneous bacterial infections and in infections associated with implants.On these wounds, the biocidal release dressings of natural origin were applied and it was possible to reduce the bacterial load present without showing signs of irritation. or inflammation in adjacent tissue. Following this line of research, in a subsequent study (ACS Applied Bio Materials 2020, 3, 5, 3430–3439), the same team demonstrated that these dressings show less local toxicity than even one of the most commonly used local antiseptics, bactericides and fungicides, chlorhexidine.

The doses required to eliminate the infection using biocides of natural origin are greater than the equivalent doses of antibiotics, however, given the tremendous concern about antibiotic resistance, this proposal may be a future alternative. These results, which have been published in the European Journal of Pharmaceutics and Biopharmaceutics, will undoubtedly help to counteract the forecasts issued by the Centers for Disease Control and Prevention of the United States, which predict that in 2050 more people will die from infections associated with antibiotic-resistant bacteria than from cancer. Therefore, any validated solution that can replace antibiotics without generating resistance can overcome some of their limitations. In the future, the task force will seek to increase the effectiveness of these naturally occurring biocides by combining them with other antiseptics.

Reference article:

Drug-eluting wound dressings having sustained release of antimicrobial compounds Enrique Gámez-Herrera, Sara García-Salinas, Sofía Salido, María Sancho-Albero, Vanesa Andreu, Marta Pérez, Lluís Luján, Silvia Irusta, Manuel Arruebo, Gracia Mendoza. Eur J Pharm Biopharm. DOI: 10.1016/j.ejpb.2020.05.025

Read More

NANBIOSIS scientists in Aragón, explain on TV their research againts coronavirus

The special program on the coronavirus pandemic  by “En Ruta con la Ciencia” of Aragón Televisión, analyzes different aspects of the disease with special attention to the work of Aragonese scientists. Among them, two  research groups that coordinate NANBIOSIS units 9 and 27.

Starting at minute 44’45 ‘of the program, Doctor Jesús Lázaro, researcher of the BSICoS group of I3A-UZ and CIBER-BBN, led by Pablo Laguna, which coordinates NANBIOSIS U27 High Performance Computing Unit, explains his research. For almost 3 years, Jesús Lázaro had been working on a European project to develop a respiratory and heart rate monitoring system for patients with EPOC to control and predict episodes of worsening disease, but the current situation has led him to redirect his goal to try to provide solutions in this crisis and have creates an application for the mobile phone to detect from our home, if we have a viral infection: – “The parameters measured by this application have to do with the nervous system Autonomous, – explains Jesús Lázaro – they are the heart rate, its variability and the respiratory rate, these three parameters would allow observing a response through SARS-COV-2. The application works based on a technology that uses the flash of the mobile phone camera as a receiver to obtain a signal that is proportional to the blood volume of the finger put on the flash light, what allows detecting both, the number of beats per minute and the morphology of the arterial pulse, to obtain the respiratory rate. At the moment this application has been tested by the research staff and the next phase is to assess it with the general public. As the application is based on detecting autonomic markers, a very high sensitivity is expected, as well as a very low specificity, which would allow detecting not only SARS-COV-2 but analyzing these parameters in other contexts and in other diseases, even detecting other eventual viruses of other eventual pandemics ”.

Further information on the research project here

Starting at 28’14 ’’ One of the problems of the coronavirus test is what is known as false negatives, people who have passed the disease, but are not detected and could continue to spread it. A research group is developing early diagnostic tests to try to reduce this error rate. Pilar Martín Duque, at the IACS Aragonese Institute of Health Sciences, is a researcher of the NFP group of the INA and the CIBER-BBN, led by Jesús Santamaría, which coordinates NANBIOSIS U9 Synthesis of Nanoparticles Unit : – “All techniques have a detection limit and a sensitivity, it is necessary to have a minimum amount of virus in the body for the virus being detected, if the viral load is low it may not be detected at that time, it is possible that some patients with a low viral load recover, but in other cases the virus begins to grow and after two weeks they can be positives”- explains Pilar Martín. Her project makes PCRs more effective by concentrating the viral load before testing. – “There is a curious case, – continues Pilar -, of an American navy ship, moored in China, in which five sailors were detected to be infected by coronavirus, so they were quarantined during fourteen days and, after new tests with negative results, they were allowed to return to the United States on the ship. However halfway through the journey, the same five sailors suffered an outbreak of the disease. Therefore, our study would be useful for detecting patients with the virus tested for the first time or for not discharging patients who had been already diagnosed if they really are not yet negative”.  It is estimated that 10% of the population has infected 80%, these 10% are the so-called “superspreaders”, they are infected with a high viral load, but they feel well and do not know about it. For example, there have been several cases in choirs, such as the Choir of Zarzuela in Madrid, where 53 members were contagious out of the 80 members form the choir, this is because when singing or speaking very loudly, more drops are produced that carry the virus”. But why do some people become infected before others? Pilar explains that this is related to some, already known, receptors for entry of viruses, the AC2 receptors, and there are people who has more of these receptors than others.

Further information on the research here:

If we have learned anything from this pandemic it is the importance of health and research, a robust research system has the knowledge, tools, and human talent to respond to any situation. If we want to be prepared for the next pandemic, it is important and essential to continue betting on research.

Read More

NANBIOSIS researchers featured in the 15th Edition of Spanish Researchers Ranking

The 15th edition of the Webometrics Ranking of World Universities has been published, ranking researchers in Spain as well as Spaniards doing research abroad. A total of 11 Directors of NANBIOSIS units appear on the most recent list, featured on the top 2000. The list is ordered by the h-index, a metric that calculates research impact based on a correlation of papers published and number of citations, and then by number of citations. The result is a list of whose’s publications have had more impact online.

NANBIOSIS researchers featured are Fernando Albericio (#207), scientific director of U3 Synthesis of Peptides Unit, Ramón Martínez Máñez (#342) U26 NMR: Biomedical Applications II, Jaume Veciana (#459) U6 Biomaterial Processing and Nanostructuring Unit, José Luis Pedraz (#906) U10 Drug Formulation unit, Jesús Santamaría (#912) U9 Synthesis of Nanoparticles Unit, Ramón Eritja (#1022) U29 Oligonucleotide Synthesis Platform (OSP), Pablo Laguna (#1153) U27 High Performance Computing, Antoni Villaverde (#1249) U1 Protein Production Platform (PPP), Laura Lechuga (#1511) U4 Biodeposition and Biodetection Unit M.Pilar Marco (#1517), U2 Custom Antibody Service (CAbS), and Josep Samitier (#1836) U7 Nanotechnology Unit.

This list reflects on the impact online publication can have as a tool to share knowledge. 

For further information: here

Read More

A project to develop rapid and early diagnostic tests of Covid-19 to reduce false negatives

The Journal Heraldo de Aragón has published an article highlighting the participation of Aragonese researchers in projects to fight Covid-19 Pandemic. Pilar Martín Duque, researcher from NANBIOSIS U9 Synthesis of Nanoparticles Unit, is leading a project financed by the Covid-19 Fund, launched by the Carlos III Health Institute (ISCIII). Thanks to this project, rapid and early diagnostic tests of Covid-19 are being developed to reduce false negatives.

To read the article: https://www.heraldo.es/branded/la-tecnologia-y-la-innovacion-claves-vitales-para-el-desarrollo-sostenible/

Read More

Infrared sensitive hydrogels to control the regeneration of bone tissue.

NANBIOSIS U9 Synthesis of Nanoparticles Unit has participated in a research carried out bu researchers of CIBER-BBN group FIOBI-HULP at Hospital de la Paz, led by Nuria Vilaboa. reclently published in the scientific journal Biomaterials The researchers have used transgenic cells, which are incorporated into the scaffolding, to regulate the physiological production of bone growth factors and induce the osteoinduction process.

Achievement of spatiotemporal control of growth factors production remains a main goal in tissue engineering. In the present work, we combined inducible transgene expression and near infrared (NIR)-responsive hydrogels technologies to develop a therapeutic platform for bone regeneration. A heat-activated and dimerizer-dependent transgene expression system was incorporated into mesenchymal stem cells to conditionally control the production of bone morphogenetic protein 2 (BMP-2). Genetically engineered cells were entrapped in hydrogels based on fibrin and plasmonic gold nanoparticles that transduced incident energy of an NIR laser into heat. In the presence of dimerizer, photoinduced mild hyperthermia induced the release of bioactive BMP-2 from NIR-responsive cell constructs. A critical size bone defect, created in calvaria of immunocompetent mice, was filled with NIR-responsive hydrogels entrapping cells that expressed BMP-2 under the control of the heat-activated and dimerizer-dependent gene circuit. In animals that were treated with dimerizer, NIR irradiation of implants induced BMP-2 production in the bone lesion. Induction of NIR-responsive cell constructs conditionally expressing BMP-2 in bone defects resulted in the formation of new mineralized tissue, thus indicating the therapeutic potential of the technological platform.

Thanks to the participation of NANBIOSIS U9 Synthesis of Nanoparticles Unit it has been possible to explore the use of gold plasmonic nanoparticles, capable of absorbing light in the near-infrared (NIR) area and converting it into heat

Article of reference:

Sánchez-Casanova, S., Martin-Saavedra, F.M., Escudero-Duch, C., Falguera Uceda, M.I., Prieto, M., Arruebo, M., Acebo, P., Fabiilli, M.L., Franceschi, R.T., Vilaboa, N. Local delivery of bone morphogenetic protein-2 from near infrared-responsive hydrogels for bone tissue regeneration. Biomaterials 241:119909. https://doi.org/10.1016/j.biomaterials.2020.119909

Read More

Laser-driven direct synthesis of carbon nanodots and application as sensitizers for visible-light photocatalysis

Researchers of NANBIOSIS U9 Synthesis of Nanoparticles Unit, present the first successful synthesis of monodisperse carbon nanodots (CNDs) with tunable photoluminescence (PL) carried out by laser pyrolysis of two common volatile organic precursors such as toluene and pyridine. Remarkably, the initial chemical composition of the precursor determines the formation of undoped or N-doped CNDs and their corresponding absorption response in the visible range (expanded for the latter). Researchers have demonstrated the control and versatility of this synthesis method to tune the final outcome and its potential to explore a great number of potential solvent candidates. Furthermore, they have successfully exploited these CNDs (both undoped and N-doped) as effective sensitizers of TiO2 nanoparticles in the visible-light driven photo-degradation of a cationic dye selected as model organic pollutant.

The synthesis of these nanomaterials has been performed by the Synthesis of Nanoparticles Unit of the ICTS “NANBIOSIS” (CIBER-BBN) at the Institute of Nanoscience of Aragon (INA)-Universidad de Zaragoza.

Article :

Nuria Mas, Jose L.Hueso, Gema Martinez, Ainhoa Madrid, Reyes Mallada, M. Carmen Ortega-Liebana, Carlos Bueno-Alejo, Jesus Santamaria. Laser-driven direct synthesis of carbon nanodots and application as sensitizers for visible-light photocatalysis. Carbon 156 (2020) 453e462

https://doi.org/10.1016/j.carbon.2019.09.073

Read More