+34 620 10 75 37info@nanbiosis.com

News U6

News U6

Expoquimia hosts the INDUSTRIAL DIALOGUES Webinars with Nora Ventosa

The International Meeting for Chemistry Expoquimia is hosting the INDUSTRIAL DIALOGUES Webinars, a total of 4 seminars discussing different topics related to the cores of the triennial meeting: circular economy, digitalization, and technology transference. This last topic will be covered by Nora Ventosa, Scientific Coordinator of NANBIOIS Unit 6Biomaterial Processing and Nanostructuring Unit

On 4 June, Nora Ventosa, Nora Ventosa will be moderating the round table on the topic of technology transference both as a researcher of the Nanomol group, from CIBER-BBN and ICMAB-CSIC, and as part of the Expoquimia Organizing Comitée. The discussion will be focused on the topic Creating tools to make innovation a reality. Science and Industry in Action.

You can register to this webinars on the Expoquimia website and follow Expoquimia on Twitter for more updates on the event!

Read More

New fluorescent organic nanoparticles to see the invisible

A new nanomaterial for bioimaging has been developed by researchers at NANBIOSIS Unit 6 Biomaterial Processing and Nanostructuring Unit from the Nanomol group from ICMAB-CSIC and CIBER-BBN . The researchars are also members of the TECNIO technology transfer network ACCIÓ-Generalitat de Catalunya, together with the New Jersey Institute of Technology (NJIT, USA) and the University of Parma (UNIPR, Italy). The results of the study are the result of the TECNIOspring PLUS project co-financed by ACCIÓ and the European Commission.

It is true that it is very difficult to understand what happens in our bodies if we are unable to visualise it. For example, we currently know that tumour cells have the capacity to grow without control thanks to various microscopic techniques that have allowed us to enlarge them to such an extent that we have been able to see each cell perfectly. The design of microscopes and the optical and electronic engineering behind them has advanced very rapidly in recent years. In fact, the 2014 Nobel Prize in Chemistry was awarded to researchers Eric Betzig, William E. Moerner and Stefan Hell, for the development of super-resolution fluorescence microscopy. These advances have made it possible to see even what is inside cells, reaching the nanometer scale with high resolution.

Now, what happens when we are not able to see what we are looking for? This is where fluorescent probes come into play, molecules that provide a signal: they emit light at a certain wavelength once they are excited. These probes must meet a series of requirements, among which are: they must have a high luminosity or brightness, be totally biocompatible, and have high photo-stability and high dispersibility in physiological media.

The Nanomol group has developed new fluorescent probes, specifically fluorescent organic nanoparticles (FONs). These new FONs are based on Quatsomes (QSs), nanovesicules produced by the same group through a green technology (Delos-susp, Nanomol Technologies SL), which are charged with fluorophores or fluorescent molecules – specifically two types of carbocyanins. The nanoparticles have an average diameter of 120 nm and have demonstrated good biocompatibility and high stability, both over time and once exposed to high power laser irradiation.

Characterization of nanovesicles was made at the ICTS “NANBIOSIS”, more specifically by the Unit 6 Biomaterial Processing and Nanostructuring Unit of CIBER-BBN.

“The brightness achieved is especially relevant: these new fluorescent nanoparticles are about 100 times brighter than other commercial fluorescent nanoparticles, such as Quantum Dots, thus allowing the acquisition of high quality images” explains Judit Morla-Folch, postdoctoral researcher of the Nanomol group at the ICMAB and first author of the study, published in the journal ACS Appl. Mater. Interfaces.

In addition, these nanoparticles have another singularity, and that is that they experience Förster resonance energy transfer, usually abbreviated as FRET. This phenomenon allows for improved image acquisition as it significantly reduces self-absorption and therefore background noise during bioimage acquisition. In addition, the FRET effect allows the integrity of the nanoparticle to be monitored, a great advantage for biomedical applications where it is necessary to know when the nanovesicle remains as a whole or it disintegrates.

In summary, the fluorescent organic nanoparticles (FONs) developed by the Nanomol group of the ICMAB-CSIC in collaboration with the NJIT (USA) and the UNIPR (Italy) constitute a promising platform for bioimaging and for the design of medical diagnostic kits.

Cover Figure: The new fluorescent organic nanoparticles allow to improve the visualization of cells and tissues under the microscope.

Reference article:

Dye-Loaded Quatsomes Exhibiting FRET as Nanoprobes for Bioimaging
Judit Morla-Folch, Guillem Vargas-Nadal, Tinghan Zhao, Cristina Sissa, Antonio Ardizzone, Siarhei Kurhuzenkau, Mariana Köber, Mehrun Uddin, Anna Painelli, Jaume Veciana, Kevin D. Belfield, and Nora Ventosa
ACS Appl. Mater. Interfaces 2020, 12, 18, 20253–20262
DOI: 10.1021/acsami.0c03040

Read More

Scientists from NANBIOSIS selected by Barcelona Activa “Preacceleration” Program

Nora Ventosa and Nathaly Segovia, (Scientific Director and Coordinator of NANBIOSIS U6 Biomaterial Processing and Nanostructuring Unit from CIBER-BBN and ICMAB_CSIC), have been selected as part of the NARTIC Project team for an incubation program by Barcelona Activa. NARTIC is a biotech project for the development of molecular therapy based on Quatsomes for diseases such as cancer.

The NARTIC project has recently been selected for the 6th edition of the Preacceleration Program, an incubation program developed by Barcelona Activa for starting ventures with a high technological impact.

The project team includes two researchers from the Molecular Nanoscience and Organic Materials (NANOMOL) group (from CIBER-BBN and ICMAB-CSIC): Nora Ventosa, as scientific advisor, and Nathaly Segovia, as scientific consultant for technology transfer. The rest of the team is formed by Ariadna Boloix, PhD fellow between the ICMAB and the Vall d’Hebron Research Institute (VHIR), as entrepreneur, Miquel Segura, researcher at VHIR, as scientific advisor, and Martí Archs, Innovation & Tech Transfer Project Manager at VHIR, as innovation and tech transfer consultant.

The project has already developed a laboratory scale proof of concept for their nanomedicine, which uses RNA molecules conjugated to Quatsomes to design a biocompatible lipidic nanoparticle that transports RNA molecules, like microRNAs or siRNAs, and releases them within cancerous cells to induce an anti-tumoral activity. This has been achieved through collaboration between the Recerca Translacional del Càncer Infantil i de l’Adolescència group at the Vall d’Hebron Research Institute (VHIR) and the NANOMOL team at ICMAB.

This program will allow to further define the business model for the project, as well as kickstart their access to the market, through workshops with experts in the field, covering topics like product discovery, lean start ups, and intelectual property, amongst others. They will also get access to the MediaTIC incubator and the possibility of a 5.000€ prize at the end of the process.

For further information: here

Read More

Peptide functionalized nanoliposomes for biomolecule intracellular delivery, prepared using compressed CO2

The PhD Researcher Dolores Bueno researcher of NANOMOL Group and NANBIOSIS Unit 6 Biomaterial Processing and Nanostructuring Unit (from CIBER-BBN and ICMAB-SCIC) has defended her PhD thesis today, 20 March 2020, by videoconference from the ICMAB Meeting Room. No public was allowed due to the drastic measures of containment taken to tackle COVID-19.

Peptide functionalized nanoliposomes for biomolecule intracellular delivery, prepared using compressed CO

Abstract: Fabry disease is a rare disease caused by a gene mutation on the X-chromosome, which encodes α-galactosidase A (GLA) enzyme. The lack of GLA causes the accumulation of globotriaosylceramide at the lysosomes. The actual treatment is based in the enzyme replacement therapy (ERT), the intravenous administration of the enzyme. Nanotechnology is a powerful tool to develop enzyme-loaded nanosystems in order to ameliorate ERT efficacy.

DELOS-SUSP (Depressurization of an Expanded Organic Solution-Suspension) methodology enables the production of small unilamellar vesicles using compressed CO2. DELOS-SUSP allows the simultaneous encapsulation of different bioactives like RGD peptide and GLA in liposomes. This Thesis has used liposomes with RGD and GLA to generate a solid proof of concept for the treatment of Fabry disease.

Supervisor:

  • Nora Ventosa Rull, NANOMOL Group, ICMAB-CSIC Scientific Director of NANBIOSIS Unit 6
  • Elisabet González Mira, NANOMOL Group, ICMAB-CSIC

Read More

New COVER in Chemistry. A European Journal: an active organic radical stable agains racemization!

The journal Chemistry. A European Journal features in its COVER the recently published article “An enantiopure propeller‐like trityl‐brominated radical: Bringing together a high racemization barrier and an efficient circularly polarized luminescent magnetic emitter” authored by rearserchers of NANBIOSIS U6 Biomaterial Processing and Nanostructuring Unit, led by Jaume Veciana (CIBER-BBN, ICMAB-CSIC)

Nowadays, it is necessary to know the increasingly specific requirements of electronic devices in order ot be able to find new multifunctional materials that allow obtaining more efficient devices. This article represents a step forward in the field of organic free radicals. Organic free radicals act as polarized light emitters synthesizing and studying the two optically active enantiomers of a new brominated derivative of the trityl radical, which show no evidence of racemization up to 60 ° C for more than two hours, due to the great steric hindrance imposed by the bulky atoms of Br that have as substituents. This fact has allowed to determine its great efficiency of luminescence of polarized light despite its purely organic nature. In addition, this result suggests that new, very improved radicals can be obtained thanks to the wide synthetic possibilities offered by Br atoms.

More information can be found in the Full Paper by I. Ratera, A. G. Campaña, J. Veciana, et al. (DOI: 10.1002/chem.202000098).

See the cover website here (DOI: 10.1002/chem.202000463)

Read More

Rare diseases Day February 29: combating Fabry Disease

29 of February is a ‘rare’ date and February, a month with a ‘rare’ number of days, has become a month to raise awareness about rare diseases and their impact on patients’ lives.  Since 2008 thousands of events happen every year all around the world and around the last day of February.

NanoMed Spain Platform and the Hospital of Sant Joan de Déu have organized the NanoRareDiseaseDay to present the latest innovations in the field of Nanomedicine for the treatment and diagnosis of rare diseases (diseases affecting less than 5 people per 10,000 inhabitants). Nora Ventosa, Scientific Director of NANBIOSIS U6 Biomaterial Processing and Nanostructuring Unit  (CIBER-BBN / ICMAB-CSIC) presented Smart4Fabry a European project with the aim of reducing the Fabry disease treatment cost and improve the life-quality of Fabry disease patients

Fabry disease is one of the rare diseases that currently lack a definitive cure. It is cause by lysosomal storage disorders (LSDs):  the deficiency of α-Galactosidase A (GLA) enzyme activity result in the cellular accumulation of neutral glycosphingolipids, leading to widespread vasculopathy with particular detriment to the kidneys, heart and central nervous system.

Smart-4-Fabry has been conceived to obtain a new nanoformulation of GLA, that will improve the efficacy and toleration compared to the actual treatment with non-formulated GLA. Four units of NANBIOSIS participate in the project:

U1 Protein Production Platform (PPP) led by Neus Ferrer and Antony Villaverde at IBB-UAB accomplish the production and purification in different expression systems for R&D purposes.

U3 Synthesis of Peptides Unit led by Miriam Royo at IQAC-CSIC performs all the chemical process of the Smart-4-Fabry  project, i.e. design and synthesis of peptides used as targeting ligands in the nanoliposome formulation

U6 Biomaterial Processing and Nanostructuring Unit led by Nora Ventosa and Jaume Veciana at ICMAB-CSIC undertakes tasks related to the manufacture of the nanoliposome formulation of GLA enzyme and the physico-chemical characterization (this unit counts with plants at different scales, from mL to L, which allow process development by QbD and process scale-up, as well as instrumental techniques for assessment of particle size distribution, particle concentration, particle morphology and stability, and Z-potential)

U20 In Vivo Experimental Platform led by Simó Schwartz and Ibane Abásolo at VHIR to carry out the non-GLP preclinical assays of the project (in vivo efficacy, biodistribution and tolerance/toxicity assays).

For further information about Fabry disease and the Smart4Fabry project: here

Nora Ventosa explaining the progress of the smart4fabry
project on nanoliposomes development for the treatment of Fabry disease
(Pictures by Nanomed Spain)
Read More

Fabry disease & Smart4Fabry project

The Fabry disease (FD) is a lysosomal storage disorder (LSD) that currently lacks an effective treatment. Lysosomes are spherical vesicles, which contain hydrolytic enzymes found in nearly all animal cells. LSDs are caused by lysosomal dysfunctions, usually because of the deficiency of a single enzyme required for the metabolism of macromolecules such as lipids, glycoproteins and mucopolysaccharides. Fabry disease is a progressive, X-linked inherited disorder caused by deficiency or absence of the α-galactosidase A (GLA) activity, an enzyme involved in the glycosphingolipid metabolism. The substrates of GLA are glycosphingolipids, being the primary substrate the globotriaosylceramide (Gb3). Therefore, the failure of GLA activity leads to progressive intracellular accumulation of Gb3, in many cells, particularly in renal epithelial cells, endothelial cells, pericytes, vascular smooth muscle cells, cardiomyocytes, and neurons of the autonomic nervous system, leading to multisystemic clinical symptoms. First clinical signs of FD occur during childhood and, over time, microvascular lesions of the affected organs progress leading to early death. It affects mostly men but serious cases have also been reported in women.

There are currently three products authorized in the EU for the treatment of FD. Two products available in EU since 2001 for Enzymatic Replacement Therapy (ERT), Replagal (Shire Human Genetic Therapies AB) and Fabrazyme (Genzyme Europe B.V.), which have to be i.v. administered every other week. The ERT strategy is based on supplying recombinant GLA to cells, reversing several of the metabolic and pathologic abnormalities. There is a third product in the EU market since 2016, which is based on the chaperone migalastat hydrochloride (Galafold Amicus Therapeutics UK Ltd), designed to selectively and reversibly bind with high affinity to the active sites of certain mutant forms of GLA, facilitating proper protein folding and allowing for correct trafficking of the mutant enzyme. However, it is a genotype-specific treatment (only one-third to one-half of mutations may be amenable).

To date, no direct comparisons exist between Fabrazyme and Replagal but significant clinical benefits compared with placebo, however, have been demonstrated with ERT, with positive effects on the heart, kidneys, nervous system and quality of life. Of note, a stabilization of renal function was only observed at an early phase of FD.

ERT success with free GLA is limited mainly due to the instability and low efficacy of the exogenously administered therapeutic enzyme. Furthermore, some patients can develop immune responses after receiving the infused recombinant enzyme. Clinical data has confirmed that the immunological consequences of ERT may impair efficacy in some patients. Furthermore, the short elimination t1/2 of the enzyme and the need for repeated administration of large amounts of enzyme are other limitations of current ERT. In addition, GLA does not cross of the Blood Brain Barrier (BBB), which prevents the product for reducing the Gb3 deposits in the central nervous system (CNS). Moreover, it is a lifelong treatment which becomes a burden for the health system due to its extremely high cost.

Therefore, there is a need for other therapeutic strategies, which can either serve as primary or supplemental treatments. Gene and substrate reduction therapies constitute alternative therapies which are at present under investigation.

The European “Smart-4-Fabry” project aims to develop a new nanoformulation based on the encapsulation of the GLA enzyme in nanoliposomes, to improve the current ERT of FD. A Consortium formed by ten partners, including private companies and public institutions in Europe and Israel, has been granted (July 2017) with a Horizon2020 financial programme by the European Commission (H2020-NMBP-2016-2017; call for nanotechnologies, advanced materials, biotechnology and production; Proposal number: 720942-2).

The project is expecting to last for 48 months and contemplates the necessary activities to advance a nanoliposome formulation of GLA enzyme, i.e., nano-GLA, from an experimental proof of concept up to an advanced nonclinical stage of development. The S4F should complete an advanced regulatory safety and toxicology package supporting future nano-GLA clinical development in patients with FD.

To the best of S4F knowledge, there is no previous experience on the encapsulation of a GLA for treating FD patients following an ERT approach.

Read More

#RareDiseaseDay: Fabry lysosomal disease

Rare Disease Day is annually held on the last day of February in more than 100 countries with the main objective of raising awareness about rare diseases and their impact on the life of patients to the general public and in particular to policy makers, public authorities, industry representatives, researchers and professionals. Rare diseases are those that affect less than 1 in 2000 people. There are more than 300 million people living with one or more than more than 6000 rare diseases worldwide identified.

Among the events organized we wont to mention the Nano Rare Diseases Day held in Barcelona on February 27, organized by the Hospital de Sant Joan de Déu and the NanoMed Spain Platform, where the latest innovations in the field of Nanomedicine for the treatment and diagnosis of these diseases will be announced, with themes ranging from early diagnosis, controlled release of drugs or the development of new therapies. During this day, experts in Nanomedicine from different fields – research, business, clinical practice, health authorities, patients, etc. – will present the latest advances and give us the opportunity to discover the progress generator that Nanomedicine means for health as creator of new opportunities in the diagnosis and treatment of minority diseases.

Nora Ventosa, Scientific Director of NANBIOSIS U6 Biomaterial Processing and Nanostructuring Unit (CIBERBBN-ICMAB_CSIC) will explain the European Smart-4-Fabry Project: use of nanotechnology for the development of a new drug for the treatment of Fabry lysosomal disease  where four units of NANBIOSIS colaborate.

Inscriptions

Read More

NANBIOSIS research to fight cancer

Twenty years ago, the 4 February was declared World Cancer Day with the global challenge of cancer would not be forgotten. Since then, huge progress has been made to understand, prevent, diagnose, and treat cancer.

NANBIOSIS as an ICTS (Singular Scientific and Technical infrastructures) for biomedical research plays a very important role in the fight against cancer. Some examples of the work carried out during the last year, are bellow:

Unit 20 of NANBIOSIS  at VHIR, works in several proyects reletaed to cancer as  H2020-NoCanTher: magnetic nanoparticles against pancreatic cancer through the use of hyperthermia combined with conventional treatment. H2020-Target-4-Cancer: nanotherapy based on polymeric micelles directed against specific receptors of tumor stem cells in colorectal cancer. H2020-DiamStar: nanodiamonds directed against leukemia for the potentiation of chemotherapy. FET-OPEN EvoNano: in silico and tumor-tumor models for the prediction of PK / PD and tumor efficacy of antitumor nanomedicines against tumor stem cells.

The activities of U1 of Protein Production Platform (PPP) are also strongly committed with several projects devoted to develop new, more selective and more efficient antitumoral drugs, with antimetastatic effects.
oordinated action between units U1 of Protein Production Platform (PPP),
U18 of Nanotoxicology and U29 of Nucleic Acid Synthesis, shows promising results in development of nanopharmaceuticals with a high degree of efficacy for the treatment of metastases in colon cancer

Unit 6 of NANBIOSIS Biomaterial Processing and Nanostructuring Unit  is also working on a joined initiative between CIBER-BBN and CIBER-ONC to improve the current ex vivo immune cell expansion systems to help introduce immunotherapies such as the adoptive cell therapies, which have shown complete remissions of terminal cancer patients, to the clinics overcoming the limitation of having enough therapeutic cells with novel Nanobiomaterials. Researchers of Unit 6 and researchers of Laboratory of Translational Research in Child and Adolescent Cancer from the Vall d’Hebron Research Institute (VHIR), are working on a project financed by the Spanish Government and CIBER-BBN, for the development of a new nanomedicine for the treatment of high-risk neuroblastoma, one of the most frequent childhood cancers.

In our unit U26. NMR: Biomedical Applications II,  several studies for cancer biomarker discovery are being carried out. NMR studies on biofluids for the design of novel strategies for diagnosis support, easily transferable into the clinical practice, are being developed in biofluids in the context of cancer. Urine is one of the most easily obtainable biofluid and is a non-invasive source of biomarkers. Among these studies, we can mention the good discrimination achieved between urine from bladder cancer patients before surgery (cancer) and urine after surgery (free of cancer) and in the follow up of the disease, to monitor relapses

Some of the results of these researchs have been published in scientific magazines of high impact as for exemple;

Integrative Metabolomic and Transcriptomic Analysis for the Study of Bladder Cancer Alba Loras, Cristian Suárez-Cabrera, M. Carmen Martínez-Bisbal, Guillermo Quintás , Jesús M. Paramio, Ramón Martínez-Máñez,
Salvador Gil and José Luis Ruiz-Cerdá. Cancers 2019, 11, 686; doi:10.3390/cancers11050686

Nanostructured toxins for the selective destruction of drug-resistant human CXCR4+ colorectal cancer stem cells Naroa Serna, Patricia Álamo, Prashanthi Rameshef, Daria Vinokurovaef, LauraSánchez-García, Ugutz Unzueta, Alberto Gallardo, María  Virtudes Céspedes, Esther Vázquez, Antonio Villaverde, Ramón Mangues, Jan Paul Medema. . Journal of Controlled Release.  Volume 320, 96-104, 2020 https://doi.org/10.1016/j.jconrel.2020.01.019

Controlling self-assembling and tumor cell-targeting of protein-only nanoparticles through modular protein engineering Voltà-Durán, E., Cano-Garrido, O., Serna, N. et al. CSci. China Mater.63, 147–156 (2020). https://doi.org/10.1007/s40843-019-9582-9

Engineering Secretory Amyloids for Remote and Highly Selective Destruction of Metastatic Foci, María Virtudes Céspedes  Olivia Cano‐Garrido  Patricia Álamo  Rita Sala  Alberto Gallardo  Naroa Serna  Aïda Falgàs  Eric Voltà‐Durán  Isolda Casanova  Alejandro Sánchez‐Chardi  Hèctor López‐Laguna  Laura Sánchez‐García  Julieta M. Sánchez  Ugutz Unzueta  Esther Vázquez  Ramón Mangues  Antonio Villaverde . Advanced Materiasls Número de artículo: 1907348 , Dec. 2019 https://doi.org/10.1002/adma.201907348

Artificial Inclusion Bodies for Clinical Development Julieta M. Sánchez  Hèctor López‐Laguna  Patricia Álamo  Naroa Serna  Alejandro Sánchez‐Chardi  Verónica Nolan  Olivia Cano‐Garrido  Isolda Casanova  Ugutz Unzueta  Esther Vazquez  Ramon Mangues  Antonio Villaverde, Advanced Science. 2019 https://doi.org/10.1002/advs.201902420

Nanostructured Nucleolin-Binding Peptide for Intracellular Drug Delivery in Triple-Negative Breast Cancer Stem Cells Mireia Pesarrodona, Laura Sánchez-García, Joaquin Seras-Franzoso, Alejandro Sánchez-Chardi, Ricardo Baltá-Foix, Patricia Cámara-Sánchez, Petra Gener,  José Juan Jara, Daniel Pulido, Naroa Serna, Simó Schwartz Jr. Miriam Royo, Antonio Villaverde, Ibane Abasolo, Esther Vazquez ACS Applied Materials & Interfaces DOI: 10.1021/acsami.9b15803  

Nanostructure Empowers Active Tumor Targeting in Ligand‐Based Molecular Delivery López‐Laguna, H., Sala, R., Sánchez, J. M., Álamo, P., Unzueta, U., Sánchez‐Chardi, A., Serna, N., Sánchez‐García, L., Voltà‐Durán, E., Mangues, R., Villaverde, A., Vázquez, E., . Part. Part. Syst. Charact. 2019, 36, 1900304. https://doi.org/10.1002/ppsc.201900304

Read More

New nanocarrier for bio-imaging and drug-delivery applications

Researchers of CIBER-BBN and NANBIOSIS-ICTS (U6 Biomaterial Processing and Nanostructuring Unit at ICMAB-CSIC and U18 Nanotoxicology Unit at  Hospital de la Santa Creu i Sant Pau have developed a new nanocarrier for bio-imaging and drug-delivery applications

The new nanovesicle formulation is based on the quatsome architecture – which stands out due to the high colloidal stability and homogeneity in size – and has now been shown to be suitable for in vivo dosing.

Quatsomes are new non-liposomal lipid-based nanovesicles that have been developed by Nanomol group in recent years, and have been shown to be highly homogeneous and stable in different media for years. This colloidal stability involves important advantages for the development of pharmaceutical formulations and for guaranteeing the final product quality. Quatsomes are a promising nanocarrier for bio-imaging and drug-delivery applications, suitable for the encapsulation of both hydrophilic and hydrophobic molecules, easily functionalized with elements that favor the directionality towards therapeutic targets.

To facilitate their use in in vivo applications, Nanomol group has now developed a new Quatsome formulation, composed of cholesterol and myristalkonium chloride (MKC), the C14 homolog of benzalkonium chloride (BAK), the latter being extensively used as antimicrobial preservative in many ophthalmic and parenteral formulations on the EU and USA market. These novel MKC-Quatsomes have been synthesized in different media that are suitable for parenteral administration, in which they showed to be stable for at least 18 months. Moreover, vesicles remained stable in human serum for at least 24 hours.

In collaboration with the Oncogenesis and Antitumour Drug group of the Biomedical Research Institute of the Hospital de la Santa Creu i Sant Pau, these MKC-Quatsomes were tested in live mice bearing xenografted colorectal tumors. After intravenous injection of fluorescently labelled MKC-Quatsomes, biodistribution assays showed nanovesicle accumulation in tumors, liver, spleen, and kidneys, but not in any other organ. Importantly, MKC-Quatsomes were well-tolerated at the administered doses, and no histological alterations or toxicity was found in any of these organs. These new results suggest the applicability of quatsomes in therapeutic approaches that require systemic delivery.

NANOMOL group, Coordinator of NANBIOSIS U6 at ICMAB-CSIC and the Oncogenesis and Antitumor Drug group, coordinator NANBIOSIS U18 at Biomedical Research Institute (Hospital de la Santa Creu i Sant Pau) are members of Biomedical Research Networking center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) and have a wide expertise and recognized excellence in the synthesis, processing and study of molecular and polymeric materials and the study of their biomedical properties. NANOMOL is also a member of the technology transfer network TECNIO. ‘

Article of reference:

MKC-Quatsomes. A stable nanovesicle platform for bio-imaging and drug-delivery applications co-authored by Guillem Vargas-Nadal et al., Nanomedicine: Nanotechnology, Biology and Medicine, 24 (2020) 102136. https://doi.org/10.1016/j.nano.2019.102136

Read More