+34 620 10 75 37info@nanbiosis.com

News U27

News U27

Esther Pueyo closes the series of conferences “Mathematics in our life”

Next Tuesday, March 13, at 7:00 pm, in the facilities of the Social Work of Ibercaja of Patio de la Infanta, the third and last conference of the cycle “Mathematics in our life” will take place, organized by the Royal Academy of Sciences of Zaragoza (RACZ).

With the title Mathematics and heart, a tandem with a great future, the last conference will be taught by Esther Pueyo Paules, professor at the University of Zaragoza, researcher at the BSICoS group of CIBER-BBN and I3A of the University of Zaragoza,which coordinates Unit 27 of NANBIOSIS High Performance Computer.

Esther Pueyo is winner of a “Starting Grant” from the European Union for the MODELAGE project to advance in the characterization of aging of the heart and the prevention of cardiac arrhythmias.

Conference by Esther Pueyo

Read More

Numerical models applied to the cornea to improve eye surgery

Researchers of the NANBIOSIS U13 apply numerical models to the cornea to better understand how it behaves and help in surgical planning. Data and algorithms developed through the computer, together with the 3D image, make it easier for ophthalmologists to perform eye surgery more precise and personalized treatments for each patient

The work carried out by Miguel Ángel Ariza Gracia at the Aragón Engineering Research Institute (I3A) has been recognized by the University of Zaragoza with the Extraordinary Award for the Best Doctoral Thesis of the Biomedical Engineering Program in 2017

In this line of research, framed in the European project PopCorn has been working Miguel Angel Ariza since September 2013 under the supervision of Begoña Calvo and José Félix Rodríguez Matas, the research group in Applied Mechanics and Bioengineering (AMB) of the I3A – CIBER -BBN, which coordinates the unit 13 of NANBIOSIS and the Laboratory of Biological Structure Mechanics (LabS) of the Politecnico di Milano, respectively. The Mechanical Characterization of Biological Tissues that the project needs is carried out in NANBIOSIS U13 Tissue & Scaffold Characterization UnitUnit 27 High Performance Computing of NANBIOSIS is also used in this project for the Computational Simulation of Biological Tissues.

The advances in corneal biomechanics open new ways and possibilities to create technical equipment that allow to know the mechanical properties and characteristics of the eye

Here are joined three technologies, the topography (allows to measure the geometry of the cornea), the tonometry of no contact or breath of air (deforms the cornea to obtain dynamic variables that are believed associated with the properties of the cornea) and the models in silico or numerical. The three, together with the phenoptic image technology, “can make it possible to obtain the geometry of a patient’s eye, with its personalized properties to give better advice to doctors in refractive surgeries or in the planning of another surgical intervention,” explains Miguel Angel Ariza

Begoña Calvo, who also works on the numerical modeling of other structures such as skeletal muscle, points out that this “generic” process of reconstruction, transfer of clinical data to the model and generation of a finite element model can be used to simulate other treatments or reproduce different surgical techniques. “The work of Miguel Ángel has allowed us to delve into what is now known as artificial intelligence, having the necessary algorithms to generate databases that can be used in the clinic,” he says.

Fibers of collagen in the cornea

The quality of the cornea tissue depends on the collagen fibers that we have embedded in the corneal stroma, its orientation is what gives that transparency and its links (crosslinks) structural integrity. “Our proposal is to go a step further, to work to better understand collagen fiber,” explains Ariza.

Nowadays, “there is no technical team that provides all the properties and allows to know what quality the corneal tissue has to be able to adequately respond to surgery and subsequent treatments,” recalls Dr. Calvo.

Read More

Pablo Laguna New Elevated IEEE Fellow for his contributions to cardiac biomedical signal processing

Pablo Laguna, Scientific Director of NANBIOSIS Unit 27, has recently been appointed as a select member (IEEE fellow) of the Institute of Electrical and Electronics Engineers within the society of Medical Engineering and Biology -IEEE-EMBS-.

The grade of Fellow recognizes unusual distinction in the profession and is conferred only by invitation of the IEEE Board of Directors upon a person with an extraordinary record of accomplishments in any of IEEE’s designated fields of interest, in this case, Dr. Laguna is recognized for his contributions to cardiac biomedical signal processing.

The IEEE-EMBSis the world’s largest international society of biomedical engineers. The 11,000 members of the organization reside in some 97 countries around the world. EMBS provides its members access to people, information, ideas and opinions that are shaping one of the fastest growing fields in science.

Pablo Laguna is Professor of Signal Theory and Communications at the School of Engineering and Architecture (EINA) and group leader of the CIBER-BBN and University of Zaragoza research group BSICoS . His work focuses on the search of non-invasive indexes to predict the risk of arrhythmias, the modeling and simulation of cardiac electrophysiology, the evaluation and quantification of the activity of the autonomic nervous system and the processing and characterization of biomedical signals in respiratory pathologies. He has been Scientific Director of the CIBER-BBN from 2011 to 2015.

Read More

Posters presentation by NANBIOSIS Units in CIBER-BBN ANNUAL CONFERENCE 2017

Last 13 and 14 of November, CIBER-BBN  has celebrated its 11th Annual Conference in Hotel Santemar in Santander. In this conference there was a poster session with the participation of the following Units of NANBIOSIS. Special mention deserves Unit 1 with Neus Ferrer as Director and  Paolo Saccardo as Coordinator (in the picture):

Posters:

U1. Protein Production Platform (PPP):

Engineering protein complexes as nano- or micro-structured vehicles or drugs for human and veterinary medicine. Ugutz Unzueta, Naroa Serna, Laura Sánchez-García, José Vicente Carratalá, Olivia Cano-Garrido, Mercedes Márquez, Paolo Saccardo, Rosa Mendoza, Raquel Díaz, Héctor, López-Laguna, Julieta Sánchez, Anna Obando, Amanda Muñoz, Andrés Cisneros, Eric Voltà, Aida Carreño, José Luis Corchero, Neus Ferrer-Miralles, Esther Vázquez, Antonio Villaverde.

Units  U1. Protein Production Platform (PPP) and U18. Nanotoxicology Unit:

Intrinsic functional and architectonic heterogeneity of tumor-targeted protein nanoparticles. Mireia Pesarrodona, Eva Crosa, Rafael Cubarsi, Alejandro Sanchez-Chardi, Paolo Saccardo, Ugutz Unzueta, Fabian Rueda, Laura Sanchez-Garcia, Naroa Serna, Ramón Mangues, Neus Ferrer Miralles, Esther Vázquez, Antonio Villaverde.

Units U3. Synthesis of Peptides UnitU6. Biomaterial Processing and Nanostructuring Unit, and U20. In Vivo Experimental Platform:

Synthesis of different length monodisperse COL-PEG-PEPTIDE to increase biodisponibility of multifunctional nanovesicles for Fabry’s desease. Edgar Cristóbal-Lecina; Daniel Pulido; Solène Passemard; Elizabet González-Mira; Jaume Veciana; Nora Ventosa; Simó Schwartz; Ibane Abasolo; Fernando Albericio and Miriam Royo.

Units U13. Tissue & Scaffold Characterization Unit and U17. Confocal Microscopy Service::

Preclinical behavior of medium-chain cyanoacrylate glue with two different surgical application forms for mesh fixation in abdominal wall repair. Gemma Pascual, Bárbara Pérez-Köhler, Marta Rodríguez, Claudia Mesa-Ciller, Ángel Ortillés, Estefanía Peña, Begoña Calvo, Juan M. Bellón.

Units U27. High Performance Computing and U8. Micro – Nano Technology Unit:

Inspiration and Expiration Dynamics in Acute Emotional Stress Assessment. Javier Milagro, Eduardo Gil, Jorge M. Garzón-Rey, Jordi Aguiló, Raquel Bailón.

U5. Rapid Prototyping Unit:

Poly-DL-lactic acid films functionalized with collagen IV as carrier substrata for corneal epithelial stem cells. Ana de la Mata, Miguel Ángel Mateos-Timoneda, Teresa Nieto-Miguel, Sara Galindo, Marina López-Paniagua, Xavier Puñet, Elisabeth Engel, Margarita Calonge.

U6. Biomaterial Processing and Nanostructuring Unit:

Strategy for engineering myoglobin nano-traps for biomedical sensing technology. E. Laukhina, O. V. Sinitsyna, N. K. Davydova, V. N. Sergeev, A. Gomez, I. Ratera, C. Blázquez Bondia, J. Paradowska, X. Rodriguez, J. Guasch, Jaume Veciana.

Structure and nanomechanics of quatsome membranes. B. Gumí-Audenis, L. PasquinaLemonche, J.A. Durán, N. Grimaldi, F. Sanz, J. Veciana, I. Ratera, N. Ventosa and M.I. Giannotti

U7. Nanotechnology Unit:

Bioreceptors nanostructuration study for early detection of Alzheimer. José Marrugo, Dr. Samuel Dulay, Dr. Mònica Mir, Prof. Josep Samitier.

RGD dendrimer-based nanopatterns promote chondrogenesis and intercellular communication for cartilage regeneration. Ignasi Casanellas, Anna Lagunas, Iro Tsintzou, Yolanda Vida, Daniel Collado, Ezequiel Pérez-Inestrosa, Cristina Rodríguez, Joana Magalhães, José A. Andrades, José Becerra, Josep Samitier.

Long-range electron transfer between redox partner proteins. Anna Lagunas, Alejandra GuerraCastellano, Alba Nin-Hill, Irene Díaz-Moreno, Miguel A. De la Rosa, Josep Samitier, Carme Rovira, Pau Gorostiza.

U8. Micro – Nano Technology Unit:

Miniaturized multi-sensing platform for pH and Dissolved Oxygen monitoring in Organ-On-aChip systems. M. Zea, A. Moya, I. Gimenez, R. Villa, G. Gabriel.

Electrochemical characterization of SWCNTs based microelectrodes fabricated by inkjet printing. M. Mass, A. Moya, G. Longinotti, M. Zea, M. Muñoz, E. Ramon, L. Fraigi, R. Villa, G. Ybarra, G. Gabriel.

U9. Synthesis of Nanoparticles Unit:

In vivo imaging and local persistance of polymeric micro- and nanomaterials labelled with the near infrared dye IR820. Isabel Ortiz de Solórzano, Gracia Mendoza, Inmaculada Pintre, Sara García-Salinas, Víctor Sebastián, Vanesa Andreu, Marina Gimeno, Manuel Arruebo.

U10. Drug Formulation:

Cationic nioplexes-in-polysaccharide-based hydrogels as versatile biodegradable hybrid materials to deliver nucleic acids. Santiago Grijalvo, Adele Alagia, Gustavo Puras, Jon Zárate, Judith Mayr, José Luis Pedraz, Ramon Eritja

U12. Nanostructured liquid characterization unit:

Perfluorocarbon-loaded Nanocapsules from Nano-emulsion Templates as Microbubble Precursors for Biomedical Applications. G. Calderó, A. González, M. Monge, C. Rodríguez-Abreu, M.J.García-Celma, C. Solans.

Biodistribution study of polymeric drug-loaded nanoparticles in murine model. Marta Monge, Aurora Dols, Stephane Fourcade, Aurora Pujol, Carlos Rodríguez-Abreu, Conxita Solans.

U16. Surface Characterization and Calorimetry Unit:

Behavior and a comparative study between tantalum and titanium alloy implant surfaces against bacterial adhesion. M.A. Pacha-Olivenza, M.L. González-Martín.

Bacterial adhesion on calcium ion-modified titanium implant surfaces. M.A. Pacha Olivenza, R. Tejero, M. Delgado-Rastrollo, M.L. González-Martín.

Bioactive coatings to promote tissue regeneration and ingrowth into 3D custom-made porous titanium endoimplants (COATREG-3D). Santos-Ruiz L; Granados JF; Ruiz F; Yáñez JI; González A; Cabeza N; Vida Y; Pérez-Inestrosa E; Izquierdo-Barba I; Vallet-Regí M; Rubio J; Orgaz F; Rubio N; González ML; Peris JL; Monopoli D; Becerra J.

U17. Confocal Microscopy Service:

Subcutaneous implantation of a biodegradable apatite/agarose scaffold: biocompatibility and osteogenesis characterization in a rat model. Natalio García-Honduvilla, Gemma Pascual, Miguel A. Ortega, Alejandro Coca, Cynthia Trejo, Jesús Román, Juan Peña, María V. Cabañas, Julia Buján, and María Vallet-Regí.

U25. NMR: Biomedical Applications I:

Dual T1/T2 NCP-based novel contrast agents for brain tumor MRI: a preclinical study. Suarez, S; Arias-Ramos, N; Candiota, AP; Lorenzo, J; Ruiz-Molina, D; Arús, C; Novio, F.

Metronomic treatment in immunocompetent preclinical GL261 glioblastoma: effects of cyclophosphamide and temozolomide. Ferrer-Font, L; Arias-Ramos, N; Lope-Piedrafita, S; Julià- Sapé, M; Pumarola, M; Arús, C; Candiota, AP.

U26. NMR: Biomedical Applications II:

Gated nanodevices for innovative medical therapies. Maria Alfonso, Irene Galiana, Beatriz Lozano, Borja Diaz de Greñu, Cristina de la Torre, Andrea Bernardos, Sameh El Sayed, Daniel MuñozEspin, Miguel Rovira, José Ramón Murguía, Manuel Serrano, Ramón Martínez-Máñez.

NANOPROBE: Gated sensing materials and devices for the detection of infectious diseases and urological cancer. Ángela Ribes, Luís Pla, Sara Santiago-Felipe, Alba Loras-Monfort, M.Carmen Martínez-Bisbal, Elena Aznar, Guillermo Quintás-Soriano, José Luis Ruiz-Cerdá, María Angeles.

 

 

 

Read More

Two researchers from NANBIOSIS Unit 27 obtain new European projects “Marie Curie”

The European Union has selected the projects sponsored by two researchers from Unit 27 of NANBIOSIS: Esther Pueyo, with “PIC”, to customize the diagnosis and cardiovascular treatment and Pablo Laguna, with “MY-ATRIA”, to improve the early detection of arrhythmias Cardiac. Both projects include massive calculations that will be executed through  unit 27 of NANBIOSIS, High Performance Computing.

“MY-ATRIA” / Mutlidisciplinary and training network for Atrial fibrillation monitoring, treatment and progression “, by Pablo Laguna, Professor of Signal Theory and Communication and researcher of the group BSICoS of I3A and CIBER-BBN and Scientific Director of Unit 27 of NANBIOSIS, will affect the early detection of Atrial fibrillation, since it is one of the most frequent cardiac arrhythmias in the adult population. We will study the cellular electrophysiological analysis that leads to the appearance of the arrhythmias so as to be able to design more efficient drugs and to guide the surgeon efficiently in the surgical interventions of ablation of the arrhythmia with minimal affectation on the atrium.

In this project with 3M euros to train 12 researchers, the group will receive 500,000 euros to hire two young pre-doctoral students.

“PIC- Personalized In-Silico Cardiology”, obtained by Esther Pueyo, a professor and researcher at the I3A at the University of Zaragoza, who holds a ‘Starting Grant’, seeks the development of mathematical and computational tools to model cardiovascular physiology in healthy subjects and patients with cardiovascular diseases and evaluate different forms of therapy.

PIC, which will train 15 researchers, has 3.9M euros, of which 250,000 euros correspond to the BSICoS group, coordinator of Unit 27 of NANBIOSIS. The network is coordinated by King’s College London and involves seven universities from EU countries as well as nine other non-academic organizations, including IBM, Medtronic and Janssen Pharmaceutica, or John Radcliffe Hospital.

Read More

NANBIOSIS at the VI Conference of Young Researchers

On June 2, the VI Conference of Young Researchers organized by the I3A at the University of Zaragoza was held, aimed at doctoral students who have as director or co-director an I3A member.

The inaugural lecture was given by José Antonio Sanz Herrera (Professor Contractor Doctor at the University of Seville and who held his doctorate at I3A) who has talked about Multidisciplinary Research as the basis of the young professor in engineering.

After the inaugural conference a first block was opened with four oral presentations, giving way to the poster session and coffee. A second and final block with four oral presentations will be held next.

One of the presentations has been made by the research group that coordinates Unit 13 of NANBIOSIS with the title “3D simulation of intraestromal ring implants for the stabilization of keratoconus“. Another of the presentations “Heart Rate Variability Analysis in Risk of Asthma Stratification” was in charge of the Coordinating Group of Unit 27 of NANBIOSIS.

Read More

Three Scientifics of NANBIOSIS in University of Zaragoza ERC 10 years celebration event

2017 is the year of the X Anniversary of the European Research Council (ERC), created to finance research projects of excellence at the frontier of knowledge of any scientific discipline.

The structure of the ERC consists of an autonomous scientific council made up of 22 distinguished scientists supported by an executive agency that is responsible for implementing the program, organizing the evaluation and managing the aid.

The University of Zaragoza, hosting three units of NANBIOSIS, joined the celebrations with an event that took place on March 15. Among the assistants, three Scientists of NANBIOSIS recognized with ERC:

Jesús Santamaría, Scientific Director of Unit 9 of NANBIOSIS, received an Advanced Grant, on the senior side, with a funding of 1.85 M. for his project Héctor.

Manuel Arruebo, researcher of the group of Nanostructured Films and Particles, coordinator of Unit 9 of NANBIOSIS, obtained the Consolidator Grant endowed with 1.5 M of euros with a Nanobiomedicine project.

Esther Pueyo, researcher of the group BSICoS, coordinator of Unit 27 of NANBIOSIS, obtained an ERC Started Grant for her Modelage project, financed with 1.5 M euros.

 

Read More

NANBIOSIS by Pablo Laguna in CIBER-BBN Bulletin

Pablo Laguna, Scientific Director of Unit 27 of NANBIOSIS considers the added value offered by the ICTS NANBIOSIS in an interview at February 2017 CIBER-BBN Bulletin.

“The relevance of the ICTS NANBIOSIS is to make available to the entire scientific community of unique infrastructures that are shared and exploited in the most optimal way avoiding redundancies.” – Explains Pablo Laguna – “Having an incentive interaction mechanism, within the same centre, it has been addressed and are tackling challenges and projects with much greater depth, both in the excellence of the research, and in its possibilities of translation to the clinic and industry.”

Pablo Laguna Scientific Director of CIBER-BBN during 2011-2015, played an important role in the creation and impulse of NANBIOSIS, signing a scientific and technological cooperation agreement with Jesus Usón Minimally Invasive Surgery Center (JUMISC) in November 2011 that served as the basis for the creation of NANBIOSIS and its incorporation to the Map of Spanish ICTS (Singular Scientific Technological Infrastructures) in 2014.

Laguna also explains for the CIBER-BBN Bulletin the research lines of the BSICoS group, coordinator of unit 27 of NANBIOSIS, which focuses on the search for non-invasive indicators to predict the risk of arrhythmias, modelling and simulation of cardiac electrophysiology, evaluation and quantification of the activity of the autonomic nervous system and the processing and characterization of biomedical signals in respiratory diseases.

To know more

NANBIOSIS by Pablo Laguna in CIBER-BBN Bulletin
Read More

Equations that can save thousands of lives

Esther Pueyo, from the research group BSICoS, coordinator of Unit 27 of NANBIOSIS, explains for the program “En route with science” of Aragon Television, her research on arrhythmias: irregularities in the functioning of the heart. Arrhythmias are the cause of 25,000 deaths per year and half of hospital admissions in Spain.

First of all they study experimentally (extracting tissues from the heart of animals and humans) how the electrical activity of the said tissues is. Then, the information collected is introduced in mathematical models to understand the heart and to make predictions of what can happen in the future and why some behaviours in the heartbeat of a patient can be dangerous. For that process, stochastic equations are used that do not have a single solution and adapt to the variability of biology. These equations allow researchers to better interpret what the electrocardiogram signals say and to make predictions of risk with greater reliability. This is a multidisciplinary research in which mathematicians, engineers, physicists, biologists, electrophysiologists collaborate to make the most of the data obtained from patients.

To carry out this research, Esther Pueyo heads the European project “MODELAGE” for which she obtained a “Starting Gran” with funding of 1.5 million euros. They model patient data collected for the project to obtain different models, not only for each individual, but also for the different tissues or cells of the same patient.

In this project they study the aging of the heart, but in the BSICoS group, they also study other types of arrhythmias, such as heart attack, ischemia, or heart behaviour of astronauts participating in a special mission, who are at increased risk for arrhythmias or babies with congenital diseases that provide them with an increased risk of having arrhythmias.

Computational modelling necessary to reproduce the experimental and clinical observations and the signal analysis are be developed using the computing platform, Unit 27 of NANBIOSIS.

For further information:

http://alacarta.aragontelevision.es/programas/en-ruta-con-la-ciencia/  Cap 44

Equations that can save thousands of lives
Read More

STAFF III database published at Physionet

The  STAFF III database have  gone public at Physionet! https://physionet.org/physiobank/database/staffiii/

The STAFF III database was acquired during 1995–96 at Charleston Area Medical Center (WV, USA) where single prolonged balloon inflation had been introduced to achieve optimal results of percutaneous transluminal coronary angiography (PTCA) procedures, replacing the typical series of brief inflations. The lead investigator Dr. Stafford Warren designed the study protocol together with Dr. Galen Wagner at Duke University Medical Center (Durham, NC, USA); Dr. Michael Ringborn (Blekinge Hospital, Karlskrona, Sweden) was responsible for data acquisition. The database consists of ECG recordings from 104 patients, accounting for substantial inter-patient variability in reaction to prolonged balloon inflation as well as variability of heart rhythm and waveform morphology. Only patients receiving elective PTCA in one of the major coronary arteries were included. Patients suffering from ventricular tachycardia, undergoing an emergency procedure, or demonstrating signal loss during acquisition, were excluded.

Since its acquisition, the STAFF III Database has been distributed by Prof. Leif Sörnmo (Lund University, Sweden), responsible for the acquisition equipment and software. The use of the STAFF III database has broadened considerably over the years, with importance for several other research problems than high-frequency ECG analysis. Although the original study protocol of the database was designed to address a set of clinical issues, the database has turned out to be highly valuable also for developing, improving, and evaluating a wide range of signal processing techniques. This database has prompted methodological development in many areas related to ischemia, see the review by Laguna and Sörnmo (2014), were the use of high performance computing platforms as NANBIOSYS are used for the analysis.

The database was prepared for PhysioNet by:

STAFF III database published at Physionet
Read More