+34 620 10 75 37info@nanbiosis.com

News U1

News U1

Fabry disease awareness month, April

The Fabry International Network (FIN) association established the month of April as the “month of Fabry” to raise awareness and educate about this disease, a rare, progressive and with multi-organ involvement pathology.

Fabry Disease is one of several dozen Lysosomal Storage Disorders that interfere with the body’s ability to break down specific fatty substances. It is a rare disease and because the rate of occurrence is less than 1 in 200,000, it is considered as one of the many “Orphan” diseases. It is more common in women, but it occurs with greater severity in men.

Fabry disease is a metabolic disease that is produced by a deficiency of the ysosomal enzyme Alpha galactosidase. It is transmitted on the X chromosome. Fabry affected patients are missing alpha-galactosidase A (alpha-gal A) which results in sugars and fatty acids (Gb3) accumulating in the cells throughout the body and impairs the function of several major organs including the kidneys and heart. In 2001, enzyme replacement therapy appeared when the alpha-galactosidase protein (alpha- and beta-agalsidase) was synthesized in the laboratory using genetic engineering techniques. This treatment is injected into patients every 15 days to replenish the deficit levels of this enzyme and stop the progression of the disease.

CIBER-BBN, partner of NANBIOSIS, leads the European project Smart4fabry funded by the Horizon 2020 program, which will be developed through a consortium formed by 14 partners from 5 different countries. The CIBER-BBN coordinates the project through the participation of four of its groups that coordinate four units of NANBIOSIS (U1.Protein Production Platform (PPP), U3. Synthesis of Peptides Unit, U6. Biomaterial Processing and Nanostructuring Unit and U20. In Vivo Experimental Platform.) In addition, the consortium is formed by the University of Aarhus (Denmark), Technion Israel Institute of Technology (Israel), Joanneum Research (Austria), Biopraxis Research AIE (Spain), the spin off Nanomol Technologies SL (Spain) ), BioNanoNet (Austria), Drug Development and Regulation SL (Spain), the Covance Laboratories LTD group (UK), and Leanbio SL (Spain) Smart-4-Fabry has been conceived and developed to obtain a new nanoformulation of GLA, that will improve the efficacy and toleration of the treatment with non-formulated GLA. The final benefit will be seen as a considerable reduction on the Fabry disease treatment cost and a substantial improvement in the life-quality of Fabry disease patients.

Fabry International Network, FIN was established in 2005, as a non-for-profit organization registered in The Netherlands. The primary aim of the project is to facilitate collaboration between patient organizations around the world to support those affected by Fabry disease

FIN is connected to over 45 countries around the world. Membership is free and open to any National Patient Organization in which Fabry patients are represented. The National Fabry Disease Foundation – USA, for April 2018 Fabry Disease Awareness Month, have been providing an educational or information post on their Facebook page, every day of the month in April. The NFDF also distributed their My Health Handbook kit  and, so far, distributed about 700 kits to individuals with Fabry disease. Fabry Australia have a new website and they are also running a new social media campaign. Fabry Support & Informatie Groep Nederland, FSIGN, since 2005  has organized every first Saturday of April (in the Fabry Awareness Month April) to be the Fabry women’s day. Japan Fabry Disease Patients and Family Association, in awareness month JFA held an open seminar at Fukuoka University Medical hall with lectures on three major topics: Newborn Mass Screening, Current Treatments and Employment and Clinical Genomics. In Spain the Fabry patient organization are the Spanish Fabry MPS Association

 

The Fabry International Network will cellebrate the 6th Fabry Expert Meeting on
8th – 10th June 2018 at the Vilnius Grand Resort, Ežeraičių g. 2, Ežeraičių km., Avižienių sen., Vilniaus raj., LT-14200, Lietuva.

DRAFT Full Program

 

Read More

Designing nanomedicines

Next May 3, will take place in Barcelona, at the Academy of Medical and Health Sciences of Catalonia and the Balearic Island, an informative session and debate about Nanotecnology and Health “Designing Nanomedicines” in wich Prof. Antonio Villaverde, Strategy Director of NANBIOSIS U1. Protein Production Platform (PPP) will give a talk on “Nanobiotechnological approaches to cancer medicine“. Prof. Jesús Martínez de la Fuente, (ICMAB-CSIC / Universidad de Zaragoza – CIBER-BBN) will speak about “the nanorevolution: towards a healthier world“.

The organization of the even has been in charge of Pilar Marco, Scientific Director of NANBIOSIS U2  Custom Antibody Service (CAbS), as a member of the board of directors of the Catalan Society of Medical Biotechnology.

Programe

Read More

Communication in science and transfer with Professor Antoni Villaverde

On June 6th, Aula Científica, in collaboration with IBB, organizes a theoretical and practical course on “Principles and practice of communication in science and in transfer“. Professor Antoni Villaverde, Strategy Director of NANBIOSIS U1. Protein Production Platform (PPP), will transmit his knowledge and experience on the preparation of scientific articles.

The objectives of the course, aimed at researchers, entrepreneurs, teachers and managers of research and transfer, are to offer basic conceptual and instrumental tools in scientific communication, focused on the writing of scientific manuscripts, preparation of scientific and technological innovation projects and transfer , and in oral and corporal expression during public presentations.

Dr A. Villaverde is Chair Professor of Microbiology at the Department of Genetics and Microbiology leader of the Nanobiotechnology group at the Institute for Biotechnology and Biomedicine and leader of the Basic and Applied Microbiology (SGR group), Autonomous University of Barcelona. He coordinates a research team of about 15 people, fully integrated in the Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). He has authored more than 250 peer-reviewed research and review papers on microbiology-biotechnology-nanosciences interfaces, apart from several books, book chapters and patents. A. Villaverde founded and ha has been Editor-in-Chief until 2017 of the Open-Access journal Microbial Cell Factories.

Information and registration: http://www.aulacientifica.com/Cursos/Varios/ComBCN.htm

 

Read More

“Smart-4-Fabry”: European project focused on the Fabry rare disease, participated by 4 units of NANBIOSIS

  • Smart-4-Fabry is a project coordinated by CIBER-BBN, funded by the European Commission within the Horizon 2020 Research and Innovation program with € 5.8 M for 4 years, which aims to develop a new nanomedicine for the treatment of the Fabry rare disease.

 

  • Fabry disease is a rare disease belonging to the group of lysosomal storage disorders, with a global incidence of 1:5,000 – 1:10,000, representing a priority health problem at European level.

 

The European project “Smart-4-Fabry”, is coordinated by CIBER-BBN, specifically by NANOMOL group at ICMAB-CSIC (Dr. Nora Ventosa) and the Biomaterial Processing and Nanostructuring Unit (U6) of  ICTS “NANBIOSIS”, and it also counts with the participation of NANBIOSIS Units U1 Protein Production Platform (PPP), U3 Synthesis of Peptides Unit, and U20 In vivo Experimental Platform.

Fabry disease is an inherited genetic disorder of the lysosomal storage group, which affects many organs and parts of the body, as it is caused by the accumulation of a lipid in the lysosomes of the cells, altering their functions and leading to cell death. This accumulation is due to the lack of an enzyme, α-Galactosidase A (GLA). The symptoms are many: limb pains, stains on the skin, problems with sweating, blurred frontal vision, gastrointestinal problems, loss of hearing, etc. In the long term it can cause renal failure, and heart and central nervous system problems.

Patients can lead a normal life with the current treatment called “enzyme replacement therapy”, where GLA is administered intravenously to patients. However, this treatment exhibits several drawbacks, related to a high instability, high immunogenicity or low efficacy of this molecule crossing cell walls. The development of a new treatment for this disease, as well as for other rare diseases, has become a priority challenge within the European program H2020.

Smart-4-Fabry, acronym for “Smart functional GLA-nanoformulation for Fabry disease”, was born with the idea of ​​obtaining a new nanoformulation of GLA that will improve the efficacy and tolerance of the existing treatments. The project will advance from experimental proof of concept, to the preclinical regulatory phase. The ultimate goal is to reduce the treatment cost and to improve the quality of life of patients with Fabry disease.

Smart-4-Fabry, involves the participation of fourteen partners from five different countries from academia and industry. The consortium is formed by: Network of Biomedical Research Centers: Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) with the NANOMOL group at the Institute of Materials Science of Barcelona (ICMAB-CSIC), the Drug Delivery and Targeting Group at the Vall d’Hebron Research Institute (GDLF-VHIR), the Peptide Synthesis Unit at the Barcelona Science Park (UQC-PCB), and the Biotechnology and Biomedicine Institute of the Autonomous University of Barcelona (IBB-UAB) (Spain); Aarhus University (Denmark); Technion Israel Institute of Technology (Israel); Joanneum Research (Austria); Biopraxis Research AIE (Spain); the spin off Nanomol Technologies SL (Spain); BioNanoNet (Austria), Drug Development and Regulation SL (Spain), the Covance Laboratories LTD (UK) group; and Leanbio SL (Spain).

For further information: http://smart4fabry.eu/

 

 

Read More

Improving biomaterials imaging for nanotechnology: rapid methods for protein localization at ultrastructural level

New publication of Tony Villaverde, Scientific Director of Unit 1 of NANBIOSIS acepted by Biotechnology Journal: The preparation of biological samples for electron microscopy is material- and time-consuming because it is often based on long protocols that also may produce artifacts. Protein labeling for transmission electron microscopy (TEM) is such an example, taking several days. However, for protein-based nanotechnology, high resolution imaging techniques are unique and crucial tools for studying the spatial distribution of these molecules, either alone or as components of biomaterials. In this paper, we tested 2 new short methods of immunolocalization for TEM, and compared them with a standard protocol in qualitative and quantitative approaches by using four protein-based nanoparticles. We reported a significant increase of labeling per area of nanoparticle in both new methodologies (H=19.811; p<0.001) with all the model antigens tested: GFP (H=22.115; p<0.001), MMP-2 (H=19.579; p<0.001), MMP-9 (H=7.567; p<0.023), and IFN-γ(H=62.110; p<0.001). We also found that the most suitable protocol for labeling depends on the nanoparticle’s tendency to aggregate. Moreover, the shorter methods reduce artifacts, time (by 30 %), residues and reagents hindering, losing, or altering antigens, and obtaining a significant increase of protein localization (of about 200 %). Overall, this study makes a step forward in the development of optimized protocols for thehigh resolution imaging techniques  high resolution imaging techniques within new biomaterials.

 

Read More

Intracellular trafficking of a dynein-based nanoparticle designed for gene delivery

Unit 1 of NANBIOSIS, Protein Production Platform (PPP) and the  Nanobiotechnology research group of CIBER-BBN in collaboration with the Universidade Estadual de Campinas and the Universidade de São Paulo have recently published, in the European Journal of Pharmaceutical Sciences, the results of the research devoted to the improvement of protein-only based nanoconjugates for gene therapy. The evaluated gene-therapy vehicle prototype  displayed a similar transfection efficiency to that of the commercial vector LipofectamineTM 2000.

Article of reference:

https://doi.org/10.1016/j.ejps.2017.11.002

Read More

Posters presentation by NANBIOSIS Units in CIBER-BBN ANNUAL CONFERENCE 2017

Last 13 and 14 of November, CIBER-BBN  has celebrated its 11th Annual Conference in Hotel Santemar in Santander. In this conference there was a poster session with the participation of the following Units of NANBIOSIS. Special mention deserves Unit 1 with Neus Ferrer as Director and  Paolo Saccardo as Coordinator (in the picture):

Posters:

U1. Protein Production Platform (PPP):

Engineering protein complexes as nano- or micro-structured vehicles or drugs for human and veterinary medicine. Ugutz Unzueta, Naroa Serna, Laura Sánchez-García, José Vicente Carratalá, Olivia Cano-Garrido, Mercedes Márquez, Paolo Saccardo, Rosa Mendoza, Raquel Díaz, Héctor, López-Laguna, Julieta Sánchez, Anna Obando, Amanda Muñoz, Andrés Cisneros, Eric Voltà, Aida Carreño, José Luis Corchero, Neus Ferrer-Miralles, Esther Vázquez, Antonio Villaverde.

Units  U1. Protein Production Platform (PPP) and U18. Nanotoxicology Unit:

Intrinsic functional and architectonic heterogeneity of tumor-targeted protein nanoparticles. Mireia Pesarrodona, Eva Crosa, Rafael Cubarsi, Alejandro Sanchez-Chardi, Paolo Saccardo, Ugutz Unzueta, Fabian Rueda, Laura Sanchez-Garcia, Naroa Serna, Ramón Mangues, Neus Ferrer Miralles, Esther Vázquez, Antonio Villaverde.

Units U3. Synthesis of Peptides UnitU6. Biomaterial Processing and Nanostructuring Unit, and U20. In Vivo Experimental Platform:

Synthesis of different length monodisperse COL-PEG-PEPTIDE to increase biodisponibility of multifunctional nanovesicles for Fabry’s desease. Edgar Cristóbal-Lecina; Daniel Pulido; Solène Passemard; Elizabet González-Mira; Jaume Veciana; Nora Ventosa; Simó Schwartz; Ibane Abasolo; Fernando Albericio and Miriam Royo.

Units U13. Tissue & Scaffold Characterization Unit and U17. Confocal Microscopy Service::

Preclinical behavior of medium-chain cyanoacrylate glue with two different surgical application forms for mesh fixation in abdominal wall repair. Gemma Pascual, Bárbara Pérez-Köhler, Marta Rodríguez, Claudia Mesa-Ciller, Ángel Ortillés, Estefanía Peña, Begoña Calvo, Juan M. Bellón.

Units U27. High Performance Computing and U8. Micro – Nano Technology Unit:

Inspiration and Expiration Dynamics in Acute Emotional Stress Assessment. Javier Milagro, Eduardo Gil, Jorge M. Garzón-Rey, Jordi Aguiló, Raquel Bailón.

U5. Rapid Prototyping Unit:

Poly-DL-lactic acid films functionalized with collagen IV as carrier substrata for corneal epithelial stem cells. Ana de la Mata, Miguel Ángel Mateos-Timoneda, Teresa Nieto-Miguel, Sara Galindo, Marina López-Paniagua, Xavier Puñet, Elisabeth Engel, Margarita Calonge.

U6. Biomaterial Processing and Nanostructuring Unit:

Strategy for engineering myoglobin nano-traps for biomedical sensing technology. E. Laukhina, O. V. Sinitsyna, N. K. Davydova, V. N. Sergeev, A. Gomez, I. Ratera, C. Blázquez Bondia, J. Paradowska, X. Rodriguez, J. Guasch, Jaume Veciana.

Structure and nanomechanics of quatsome membranes. B. Gumí-Audenis, L. PasquinaLemonche, J.A. Durán, N. Grimaldi, F. Sanz, J. Veciana, I. Ratera, N. Ventosa and M.I. Giannotti

U7. Nanotechnology Unit:

Bioreceptors nanostructuration study for early detection of Alzheimer. José Marrugo, Dr. Samuel Dulay, Dr. Mònica Mir, Prof. Josep Samitier.

RGD dendrimer-based nanopatterns promote chondrogenesis and intercellular communication for cartilage regeneration. Ignasi Casanellas, Anna Lagunas, Iro Tsintzou, Yolanda Vida, Daniel Collado, Ezequiel Pérez-Inestrosa, Cristina Rodríguez, Joana Magalhães, José A. Andrades, José Becerra, Josep Samitier.

Long-range electron transfer between redox partner proteins. Anna Lagunas, Alejandra GuerraCastellano, Alba Nin-Hill, Irene Díaz-Moreno, Miguel A. De la Rosa, Josep Samitier, Carme Rovira, Pau Gorostiza.

U8. Micro – Nano Technology Unit:

Miniaturized multi-sensing platform for pH and Dissolved Oxygen monitoring in Organ-On-aChip systems. M. Zea, A. Moya, I. Gimenez, R. Villa, G. Gabriel.

Electrochemical characterization of SWCNTs based microelectrodes fabricated by inkjet printing. M. Mass, A. Moya, G. Longinotti, M. Zea, M. Muñoz, E. Ramon, L. Fraigi, R. Villa, G. Ybarra, G. Gabriel.

U9. Synthesis of Nanoparticles Unit:

In vivo imaging and local persistance of polymeric micro- and nanomaterials labelled with the near infrared dye IR820. Isabel Ortiz de Solórzano, Gracia Mendoza, Inmaculada Pintre, Sara García-Salinas, Víctor Sebastián, Vanesa Andreu, Marina Gimeno, Manuel Arruebo.

U10. Drug Formulation:

Cationic nioplexes-in-polysaccharide-based hydrogels as versatile biodegradable hybrid materials to deliver nucleic acids. Santiago Grijalvo, Adele Alagia, Gustavo Puras, Jon Zárate, Judith Mayr, José Luis Pedraz, Ramon Eritja

U12. Nanostructured liquid characterization unit:

Perfluorocarbon-loaded Nanocapsules from Nano-emulsion Templates as Microbubble Precursors for Biomedical Applications. G. Calderó, A. González, M. Monge, C. Rodríguez-Abreu, M.J.García-Celma, C. Solans.

Biodistribution study of polymeric drug-loaded nanoparticles in murine model. Marta Monge, Aurora Dols, Stephane Fourcade, Aurora Pujol, Carlos Rodríguez-Abreu, Conxita Solans.

U16. Surface Characterization and Calorimetry Unit:

Behavior and a comparative study between tantalum and titanium alloy implant surfaces against bacterial adhesion. M.A. Pacha-Olivenza, M.L. González-Martín.

Bacterial adhesion on calcium ion-modified titanium implant surfaces. M.A. Pacha Olivenza, R. Tejero, M. Delgado-Rastrollo, M.L. González-Martín.

Bioactive coatings to promote tissue regeneration and ingrowth into 3D custom-made porous titanium endoimplants (COATREG-3D). Santos-Ruiz L; Granados JF; Ruiz F; Yáñez JI; González A; Cabeza N; Vida Y; Pérez-Inestrosa E; Izquierdo-Barba I; Vallet-Regí M; Rubio J; Orgaz F; Rubio N; González ML; Peris JL; Monopoli D; Becerra J.

U17. Confocal Microscopy Service:

Subcutaneous implantation of a biodegradable apatite/agarose scaffold: biocompatibility and osteogenesis characterization in a rat model. Natalio García-Honduvilla, Gemma Pascual, Miguel A. Ortega, Alejandro Coca, Cynthia Trejo, Jesús Román, Juan Peña, María V. Cabañas, Julia Buján, and María Vallet-Regí.

U25. NMR: Biomedical Applications I:

Dual T1/T2 NCP-based novel contrast agents for brain tumor MRI: a preclinical study. Suarez, S; Arias-Ramos, N; Candiota, AP; Lorenzo, J; Ruiz-Molina, D; Arús, C; Novio, F.

Metronomic treatment in immunocompetent preclinical GL261 glioblastoma: effects of cyclophosphamide and temozolomide. Ferrer-Font, L; Arias-Ramos, N; Lope-Piedrafita, S; Julià- Sapé, M; Pumarola, M; Arús, C; Candiota, AP.

U26. NMR: Biomedical Applications II:

Gated nanodevices for innovative medical therapies. Maria Alfonso, Irene Galiana, Beatriz Lozano, Borja Diaz de Greñu, Cristina de la Torre, Andrea Bernardos, Sameh El Sayed, Daniel MuñozEspin, Miguel Rovira, José Ramón Murguía, Manuel Serrano, Ramón Martínez-Máñez.

NANOPROBE: Gated sensing materials and devices for the detection of infectious diseases and urological cancer. Ángela Ribes, Luís Pla, Sara Santiago-Felipe, Alba Loras-Monfort, M.Carmen Martínez-Bisbal, Elena Aznar, Guillermo Quintás-Soriano, José Luis Ruiz-Cerdá, María Angeles.

 

 

 

Read More

Public-Private collaboration to Investigate New Inhibitors Against Pain

Unit 1 of NANBIOSIS, together with Synchroton Alba and the pharmaceutical ESTEVE jointly investigate the mechanisms of new inhibitors against pain

ESTEVE, a chemical – pharmaceutical group leader in Spain and with an important international presence, has developed new inhibitors against pain. Collaboration with scientific expertise of the Protein Production Platform and the ALBA Synchrotron will allow studyingthe interaction of these inhibitors with its potential target. The results of the research may help to the better understanding of the effects of the inhibitors and will provide key information to improve their properties.

The  Protein Production Platform (Unit 1 of NANBIOSIS) is in charge of obtaining the pure protein complexed with the inhibitors, then, the biolab and XALOC beamline in the ALBA Synchrotron  shall performeX-ray crystallography studies

Additionally, a complete experimental platform will be set-up opening the door to further studies and collaborations

U1 NANBIOSIS - Public-Private collaboration to Investigate New Inhibitors Against Pain
Read More

“a-Galactosidase A Loaded Nanoliposomes with Enhanced Enzymatic Activity and Intracellular Penetration”

Unit 1 of NANBIOSIS, Protein Production Platform (PPP), Unit 3, Synthesis of Peptides, Unit 20, In Vivo Experimental Platform and Unit 6, Biomaterial Processing and Nanostructuring Unit, have jointly developed the research conducted in relation with a CO2-based methodology for the one-step production of protein-nanoliposome conjugates as bio-active nanomaterials with therapeutic interest. The results have been published in Advanced Healthcare Materials: http://www.ncbi.nlm.nih.gov/pubmed/26890358

“a-Galactosidase A Loaded Nanoliposomes with Enhanced Enzymatic Activity and Intracellular Penetration I. Cabrera, I. Abasolo, J. L. Corchero, E. Elizondo,  P. Rivera, E. Moreno, J. Faraudo, S. Sala, D. Bueno, E. González-Mira, M. Rivas, M. Melgarejo, D. Pulido, F. Albericio, M. Royo, A. Villaverde, M. F. García-Parajo, S. Schwartz Jr., N. Ventosa,*, and J. Veciana,*

Lysosomal storage disorders (LSD) are caused by lysosomal dysfunction usually as a consequence of deficiency of a single enzyme required for the metabolism of macromolecules such as lipids, glycoproteins and mucopolysaccharides. For instance, the lack of alpha-Galactosidase A (GLA) activity in Fabry disease patients causes the accumulation of glycosphingolipids in the vasculature leading to multiple organ pathology.

Enzyme replacement therapy (ERT), which is the most common treatment of LSD, exhibits several drawbacks mainly related to the instability and low efficacy of the exogenously administered therapeutic enzyme. In this work, the unprecedented increased enzymatic activity and intracellular penetration achieved by the association of a human recombinant GLA to nanoliposomes functionalized with RGD peptides is reported. Moreover, these new GLA loaded nanoliposomes lead to a higher efficacy in the reduction of the GLA substrate named globotriasylceramide (Gb3) in a cellular model of Fabry disease, than that achieved by the same concentration of the free enzyme. The preparation of these new liposomal formulations by DELOS-SUSP, based on the Depressurization of a CO2-Expanded Liquid Organic Solution, shows the great potential of this CO2-based methodology for the one-step production of protein-nanoliposome conjugates as bioactive nanomaterials with therapeutic interest.

“a-Galactosidase A Loaded Nanoliposomes with Enhanced Enzymatic Activity and Intracellular Penetration”
Read More

Unit 1 of NANBIOSIS certified with ISO 9001: 2008

Unit 1 of NANBIOSIS, Production Platform Protein (PPP) at the Autonomous University of Barcelona, ​​directed by Dra. Neus Ferrer and coordinated by Professor Antonio Villaverde, provides the service of production and purification of recombinant proteins in different systems expression, microbial and non-microbial. This service was audited last November, based on the UNE EN ISO 9001: 2008 AENOR, who has issued a favourable certification report.

The requirements of this standard cover all aspects of management. This certification will expand and consolidate the service  that the Unit 1 of NANBIOSIS is giving to companies and public sector researchers and facilitate their integration in cooperative international projects.

AENOR is a Spanish company, renowned in national and international levels, in the development of standardization and certification activities. It was, in 1996 the first Spanish entity accredited by the National Accreditation Body (ENAC)

Nanbiosis_Unit 1 of NANBIOSIS certified with ISO 9001- 2008
Read More