+34 620 10 75 37info@nanbiosis.com

News U1

News U1

Two NANBIOSIS Units of CIBER-BBN at UAB, one of the 300 best universities in the world, according the Shanghai Ranking

The Academic Ranking of World Universities (ARWU), known as Shanghai Ranking, which was made public on August 15, places the Autonomous University of Barcelona among the elite of the 300 best universities in the world.

This indicator organizes up to 20,000 university centers worldwide,
based on transparent methodology and objective third-party data. ARWU is regarded as one of the three most influential and widely observed university rankings

Two of NANBIOSIS Units created by UAB and CIBER-BBN are part of this university:

U1 Protein Production Platform (PPP), led by Toni Villaverde, Neus Ferrer and Mercedes Marquez, offer an “tailored” service for the design, production and purification of recombinant proteins using both prokaryotic and eukaryotic expression systems

U25 NMR: Biomedical Applications I, led by Carles Arús and Ana Paula Candiota, with a recognized research track record in the use of NMR as a tool for biomedical applications, and more especifically to identify biomarkers of different pathologies, the main objective of this unit is the acquisition, processing and/or interpretation of Nuclear Magnetic Resonance data

Read More

How engineered protein helps Nanomedicine againts Cancer

The use of protein nanoparticles as biomaterials have been rising in recent years due to their characteristics: high biocompatibility, structural versatility, biodegradability and plasticity of design. We can later incorporate peptide ligands for specific targeting as fusion proteins and use these nanoparticles for targeted nanomedicine.

However, not all proteins can be used as scaffolds for targeted drug delivery, as they need to meet certain criteria. First, it is crucial that the proteins used as a scaffold allow site-specific drug conjugation. The stability and proteolysis resistance of these proteins is also important to remain assembled during the bloodstream circulation. In addition, the scaffolds must be biologically neutral, meaning that they should not interact with other human proteins that interfere with their capacity to reach and specifically deliver their cargo. The lack of immunogenicity of these proteins is also desired to avoid immune system recognition. And, ideally, the proteins used as a scaffold should not have post-translational modifications to ensure that they fold equally in both prokaryotic and eukaryotic cell factories for production.

The scaffolds that have all these properties have a better chance to both achieve a proper biodistribution and to successfully deliver their cargo molecules into the target cells. The Green Fluorescent Protein (GFP) satisfy most of the desired characteristics for a scaffold. Moreover, its intrinsic fluorescence allows the tracking of the protein distribution and intracellular localization both in vitro and in vivo.

The use of GFP as a protein scaffold for targeted drug delivery has been extensively studied in our group. We have been able to deliver cytotoxic drugs through our patented platform for targeted delivery. This platform consists of a cationic peptide ligand (T22) and a hexa-histidine peptide that act as self-assembling tags. T22 is a CXCR4 ligand that enables a targeted delivery to CXCR4+ cells, a receptor that is overexpressed in metastatic cancer cells. We have demonstrated previously in an in vivo model that more than the 85% of the administered product was accumulated in the tumor and that we could efficiently conjugate Floxuridine (a genotoxic antimetabolite) to our T22-GFP-H6 nanoparticles, resulting in a strong anti-metastatic activity.

Despite these very promising results, GFP is an exogenous protein from Aequorea victoria and, consequently, triggers an immune response, which limits its clinical use. Thus, we needed to find a human protein that matches the exceptional properties of GFP as a protein scaffold. Fortunately, a non-fluorescent GFP-like protein has been described in humans and it corresponds to one of the three globular domains of Nidogen, a structural protein that binds to collagen IV, laminin and perlecan with high affinity. The globular domain G2 has a beta-barrel structure with a central alpha-helix that folds very similarly to the GFP, despite that these proteins share very low sequence identity. Notably, this domain does not have post-translational modifications that could interfere with its production and folding in prokaryotic cells.

However, perlecan and collagen IV binding sites have been reported within this G2 domain. Therefore, we needed to selectively mutate these binding sites in order to assure the biological neutrality of the nanoparticles. After a thorough structural analysis, we incorporated four different mutations to engineer a biologically neutral product that was named HSNBT. There were no differences detected between the wild-type G2 domain and the engineered HSNBT protein regarding the predicted structural epitopes, which suggested that the introduced mutations would not generate immunogenicity.

In order to validate the new scaffold, we used the above-mentioned patented platform with T22 and the hexa-histidine tag, replacing GFP for the new HSNBT scaffold. First, we characterized the resulting nanoparticles and we determined, both by Dynamic Light Scattering (DLS) and Scanning Electron Microscopy (SEM), that they had a size of around 10 nanometers. Then, we observed that the T22-HSNBT-H6 nanoparticles were internalized effectively by CXCR4+ cells. This specificity was corroborated when we used a CXCR4 antagonist (AMD) and we saw a notable decrease of their internalization. Then, we successfully conjugated floxuridine to the nanoparticles (T22-HSNBT-H6-FdU) through the free lysine-amino groups of the protein and we demonstrated that the nanoconjugates had a potent cytotoxic effect in CXCR4+ cells.

Once we have validated these nanoconjugates in vitro, we tested them in a colorectal cancer mouse model. Notably, we saw an important tumor growth inhibition after several doses of these nanoconjugates. The inhibitory effect was slightly higher when using the new scaffold than with GFP. We also saw a significant increase in cell death bodies and caspase-3 activation in the tumor after the treatment with the nanoconjugates. Again, the effect was more potent with HSNBT as a scaffold than with GFP. Remarkably, the treatment did not result in any histological toxicity and there were no differences between the weight of the treated mice when compared to the untreated mice.

This technology is protected by 3 patents: The ligand to enter CXCR4+ cells (WO2012/095527), the nanoconjugates (EP17382461.6) and the human scaffold protein HSNBT, (EP19383201), all three licensed to Nanoligent SL.

All in all, these results confirm that the G2 domain of nidogen can be used as a protein scaffold for targeted drug delivery. Its performance both in vitro and in vivo not only matches the observed with GFP, but it is even more efficient than GFP when conjugated with floxuridine. Therefore, the engineered HSNBT protein shows a very exciting potential to be used in the development of protein-based nanomedicines.  

By Carlos Martínez Torró (NANBIOSIS U1 PPP)

Read More

Wide representation of NANBIOSIS research in NALS 2022 and best Oral Presentation to Eloi Parladé

During the last 27-29 April, the 3rd International Conference on Nanomaterials Applied to Life Sciences 2022 (NALS 2022) has taken place in the Excellence Campus of Universidad de Cantabria in Santander (Spain), organized by the University of Cantabria and Institute Valdecilla-IDIVAL.

NALS 2022 has been a multidisciplinary conference series sharing new results and ideas in the fields of biosensors, lab on a chip, drug delivery nanopharmacy. nanobiotechnology, intelligent nanomaterials, magnetic materials, nanotoxicity, antimicrobials, novel applications of 3d bioprinting and nanoimaging.

NANBIOSIS has been represented at this edition by members of several of its units, among them we must highlight the set of four oral communication presented by members of the Nanobiotechnology group-Unit 1 of NANBIOSIS “Protein Production Platform (PPP)”, from CIBER-BBN and IIB-UAB the talks were delivered by:

Eloi Parladé: “Development of ion-dependent microscale secretory granules for nanomedical applications

Carlos Martínez-Torró: “Design of a human GFP-like protein scaffold for targeted nanomedicines

Eric Voltá Durán: “Antitumoral nanoparticles with multiple activities, a close reality

Jan Atienza-Garriga: “Characterization of protein-only NPs containing amps and analysis of their protection with liposomes and micelles

They summarized a wide area of the team activities on the design of protein-based protein materials for clinical uses, produced by means of diverse types of cell factories. In particular, antimicrobial peptides, cytotoxic proteins with antitumoral targeting and drug-carrying scaffold proteins are engineered to confer self-assembling properties as either microparticles or nanoparticles, that can be further functionalized with chemical drugs through covalent binding. Microparticles are of special interest as they can be used as slow drug delivery systems for nanostructured drugs upon subcutaneous administration. Alternatively, nanoparticles can be also presented as embedded in liposomes or other micellar structures that stabilize them for enhanced performance.

Three NANBIOSIS units supported the presented research, which has been executed in a highly cooperative way: namely U1 (Protein Production Platform), led by Tony Villaverde U18 (Nanotoxicology), led by Ramón Mangues and U29 (Oligonucleotide Synthesis Platform), led by Ramón Eritja.

Among all the excellent contributions by the team, it is worthy to stress that the prize for the best Oral Presentation was granted to Dr Eloi Parladé.

Other talk by researchers from NANBIOSIS were “Antioxidant-loaded polymeric NPs prepared by nano-emulsion templating for the management of neurological diseases” by Santiago Grijalvo, from NANBIOSIS U12 and  “Exploiting GSH oxidation with nanocatalysts to promote cancer cell death” by Javier Bonet-Aletá from NANBIOSIS U9

On the other hand, Jesús Santamaría,  Scientific Director of NANBIOSIS U9 was a Keynote Speaker in the Conference with the talk: “A change of paradigm in cancer therapy? Using catalysts to make drugs inside the tumor, rather than trying systemic chemotherapy”

NALS 2022 has been an excellent conference, with presentations covering a wide range of topics in nanomaterials for health, and a great opportunity for our researchers, especially for young’s, to let know their collaborative work, as well as make new connections on common research interests, thanks to the good socializing opportunities afforded by the scheduling of the organization conference.

Read More

Fabry Desease in the Rare Disease Day: A New Hope

WHY DO CELEBRATE TODAY THE INTERNATIONAL #RareDiseaseDay?

29 of February is a ‘rare’ date and February, a month with a ‘rare’ number of days, has become a month to raise awareness about rare diseases and their impact on patients’ lives.  Since 2008 thousands of events happen every year all around the world and around the last day of February with the aim of improving equity and reducing stigmatization for people who live with more than 6,000 rare diseases.

WHAT ARE RARE DISEASES

Rare diseases are pathologies or disorders that affect a small part of the population (less than 5 per 10,000 inhabitants) and generally have a genetic component. They are also known as orphan diseases.

Diseases present a series of particular symptoms, and it is very difficult to diagnose what their true cause is. These disorders or alterations that patients present must be evaluated by a specialist, depending on each case.

Today 5% of the world population suffer from them. This translated into numbers, corresponds to approximately 300 million affected.

A patient with a rare disease waits an average of 4 years to obtain a diagnosis, in 20% of cases it takes 10 or more years to achieve the proper diagnosis.

ORPHAN DRUGS

To combat this disease, patients need to be treated with so-called orphan drugs. They serve to prevent and treat pathology. Its composition is based on biotechnological compounds whose manufacture is very expensive and not profitable for companies. For this reason, cooperation of governments is needed as well as financial incentives to encourage pharmaceutical companies to develop and market medicines to make these treatments accessible to a greater number of people.

FABRY DISEASE

Fabry is one of the rare diseases that currently lack a definitive cure. Symptoms may include episodes of pain, especially in the hands and feet (acroparesthesias); small dark red spots on the skin called angiokeratomas; decreased secretion of sweat (hypohidrosis); opacity of the cornea (cataracts) and hearing loss. Internal organs such as the kidney, heart, or brain may be involved, resulting in progressive kidney damage, heart attacks, and strokes.

Fabry disease is a lysosomal storage disease arising from a deficiency of the enzyme α-galactosidase A (GLA). The enzyme deficiency results in an accumulation of glycolipids, which over time, leads to cardiovascular, cerebrovascular, and renal disease, ultimately leading to death in the fourth or fifth decade of life. Currently, lysosomal storage disorders are treated by enzyme replacement therapy (ERT) through the direct administration of the missing enzyme to the patients.

SMART 4 FABRY” EUROPEAN PROJECT

CIBER-BBN, through the researcher Nora Ventosa has coordinated the european project “Smart-4-Fabry” developed during 2017-2021, the proyect was undertaken by a consortium formed by ten partners, including private companies and public institutions in Europe and Israel, with a Horizon 2020 financial programme by the European Commission (H2020-NMBP-2016-2017; call for nanotechnologies, advanced materials, biotechnology and production; Proposal number: 720942-2).

In view of their advantages as drug delivery systems, liposomes are increasingly being researched and utilized in the pharmaceutical, food and cosmetic industries, but one of the main barriers to market is their scalability.

Depressurization of an Expanded Liquid Organic Solution into aqueous solution (DELOS-susp) is a compressed fluid-based method that allows the reproducible and scalable production of nanovesicular systems with remarkable physicochemical characteristics, in terms of homogeneity, morphology, and particle size. The objective of this work was to optimize and reach a suitable formulation for in vivo preclinical studies by implementing a Quality by Design (QbD) approach, a methodology recommended by the FDA and the EMA to develop robust drug manufacturing and control methods, to the preparation of α-galactosidase-loaded nanoliposomes (nanoGLA) for the treatment of Fabry disease.

Through a risk analysis and a Design of Experiments (DoE), researechers obtained the Design Space in which GLA concentration and lipid concentration were found as critical parameters for achieving a stable nanoformulation. This Design Space allowed the optimization of the process to produce a nanoformulation suitable for in vivo preclinical testing.

The new nanoformulation developed by Smart4Fabry for the treatment of Fabry disease achieved the ODD (Orphan Drug Designation) by the European Commission. The new nanomedicine is more effective and has a better biodistribution than the current treatments, based on enzyme replacement. The new nanomedicine is based on a nanovesicle that protects the enzyme and achieves a better cell internalisation, thus reducing the doses needed, the total cost and improving the quality of patients.

Four units of NANBIOSIS participated in the project:

– U1 Protein Production Platform (PPP) led by Neus Ferrer and Antony Villaverde at IBB-UAB for the production and purification in different expression systems for R&D purposes.

– U3 Synthesis of Peptides Unit led by Miriam Royo at IQAC-CSIC performed all the chemical process of the Smart-4-Fabry project, i.e. design and synthesis of peptides used as targeting ligands in the nanoliposome formulation.

– U6 Biomaterial Processing and Nanostructuring Unit led by Nora Ventosa at ICMAB-CSIC developed tasks related to the manufacture of the nanoliposome formulation of GLA enzyme and the physico-chemical characterization (this unit counts with plants at different scales, from mL to L, which allow process development by QbD and process scale-up, as well as instrumental techniques for assessment of particle size distribution, particle concentration, particle morphology and stability, and Z-potential) .

– U20 In Vivo Experimental Platform led by Ibane Abásolo at VHIR carried out the non-GLP preclinical assays of the project (in vivo efficacy, biodistribution and tolerance/toxicity assays).

PHOENIX: OPEN INNOVATION TEST BED

Researchers of CIBER-BBN and NANBIOSIS, led by Nora Ventosa, are currently participating in another european project, PHOENIX “Enabling Nano-pharmaceutical Innovative Products” in the framework of which this novel nanomedicine developed under the Smar4Fabry project and designed as Orphan Drug by the EMA, will be scaled-up and manufactured under GMP to enable its clinical testing.

Articles of reference:

Josep Merlo-Mas, Judit Tomsen-Melero, José-Luis Corchero, Elisabet González-Mira, Albert Font, Jannik N. Pedersen, Natalia García-Aranda, Edgar Cristóbal-Lecina, Marta Alcaina-Hernando, Rosa Mendoza, Elena Garcia-Fruitós, Teresa Lizarraga, Susanne Resch, Christa Schimpel, Andreas Falk, Daniel Pulido, Miriam Royo, Simó Schwartz, Ibane Abasolo, Jan Skov Pedersen, Dganit Danino, Andreu Soldevila, Jaume Veciana, Santi Sala, Nora Ventosa, Alba Córdoba, “Application of Quality by Design to the robust preparation of a liposomal GLA formulation by DELOS-susp method”, The Journal of Supercritical Fluids, Volume 173, 2021, 105204, https://doi.org/10.1016/j.supflu.2021.105204.

Judit Tomsen-Melero, Solène Passemard, Natalia García-Aranda, Zamira Vanessa Díaz-Riascos, Ramon González-Rioja, Jannik Nedergaard Pedersen, Jeppe Lyngsø, Josep Merlo-Mas, Edgar Cristóbal-Lecina, José Luis Corchero, Daniel Pulido, Patricia Cámara-Sánchez, Irina Portnaya, Inbal Ionita, Simó Schwartz, Jaume Veciana, Santi Sala, Miriam Royo, Alba Córdoba, Dganit Danino, Jan Skov Pedersen, Elisabet González-Mira, Ibane Abasolo, and Nora Ventosa. Impact of Chemical Composition on the Nanostructure and Biological Activity of α-Galactosidase-Loaded Nanovesicles for Fabry Disease Treatment, ACS Appl. Mater. Interfaces 2021, 13, 7, 7825–7838 ( https://doi.org/10.1021/acsami.0c16871).

Read More

Nanoligent, whoes founders are leaders of NANBIOSIS units, raises €1M in Series Seed financing

Barcelona, Spain – Milan, Italy, February 3rd, 2022 – Nanoligent SL, a biotech company specialized in the development of nanotechnology-based cancer treatments, today announces the completion of the first closing of a Seed financing round of €1M. The round has been led by members of Italian Angels for Growth, the largest network of business angels in Italy, through the investment vehicle Nanolinvest, and AVANTECA Partners, a Swiss privately held asset management firm, both specialized in supporting innovative early-stage life-science companies primarily in Europe. An equity campaign, is still ongoing on Doorway, an online investment platform, thus promising to provide additional funding for the company.

NANOLIGENTis spin off from the Universidad Autónoma de Barcelona and Research Institute of the Hospital de Sant Pau – IIB Sant Pau that was created by the Directors of NANBIOSIS Units U18. Nanotoxicology Unit, Ramón Mangues and U1. Protein Production Platform (PPP), Antoni Villaverde, together with Esther Vázquez and Manuel Rodriguez

Nanoligent, is focused on the development of new drugs for the treatment of more than 20 different metastatic cancer types. The lead molecule is based on the targeted elimination of cancer cells overexpressing the CXCR4 receptor, a recognized biomarker for poor prognosis and therapy resistance. Nanoligent is developing a new proprietary nano-technological platform, with the potential to overcome current limitations of Antibody-Drug-Conjugates. The CXCR4 is overexpressed in a significant number of patients of more than 20 different tumors.

The financing will allow Nanoligent to complete the pre-clinical development in a variety of tumor types and to move its lead candidate into pre-IND stage.

The investor syndicate will join the Nanoligent’s Board which will consist of: Michele Marzola (IAG), Michael Milos (Avanteca Partners), Manuel Rodríguez (Chairman) and Montserrat Cano (CEO).

“We started the evaluation of a possible investment in Nanoligent one year ago and since then we have received enthusiastic responses from Key Opinion Leaders and Industry Experts. It has been a real pleasure working with the team at Nanoligent; we are impressed by their scientific depth and professional responses. We are continuing our fundraise for this deal together with Doorway, a fintech investing platform”, said Michele Marzola who together with Alessandro Toniolo are co-champions from IAG in this investment.

“We are fascinated by the technological capabilities of the platform and the professionalism of the team. The whole process was an intense, productive and very professional exchange. We are looking forward to partner with the management of Nanoligent to develop this highly innovative platform, which has the potential to transform cancer therapy” said Michael Milos from AVANTECA Partners.

“It is our great pleasure to welcome Michele Marzola and Michael Milos, whose expertise and experience will be a valuable addition to the company to accomplish its ambitious development plans over the next 18 months” said Montserrat Cano, CEO of Nanoligent.

Doorway, at its turn, is very happy to continue fundraising with its qualified community for such an innovative technology that can achieve a significant impact in the treatment of many cancers, being Nanoligent a perfect example of Doorway’s vision of “business with an impact”.

About Nanoligent

Nanoligent was founded in 2017 by co-founder and Chairman Manuel Rodriguez Mariscal, as a spin-off coming from more than 10 years of fruitful collaboration between the Nanobiotechnology group at the Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, co-lead by full professor Antonio Villaverde and Principal Investigator Esther Vázquez, and the Oncogenesis and Antitumor Drug Group at the Biomedical Research Institut Sant Pau of the Hospital de la Santa Creu i Sant Pau, headed by full professor Ramon Mangues, the three of them also co-founders of the company. Montserrat Cano joined the company in 2020, with more than 15 years of experience in pharma and biotech companies. The aim of the company is to develop a pioneering technological platform based on protein-drug nanoconjugates to target metastasis across several tumor types.

 About Italian Angels for Growth

IAG, founded in 2007, is a leader in the Italian seed venture capital: more than 270 protagonists of the entrepreneurial, financial and industrial world that invest time, skills and capital for the growth of innovative startups. Italian Angels for Growth, in more than ten years of activity, has analyzed more than 6,500 startups and its members have made over 100 investments, for a total of over 300 million euros invested by IAG members and co-investors. IAG business angels support innovative projects financially by investing their own capital, but at the same time, thanks to the mix of skills of the members, support the founders of the startups in the definition of the business model in all its aspects.

 About AVANTECA Partners

AVANTECA Partners is a Swiss-based, privately held asset management company that invests in early-stage life science companies.

Related News

A new pathway for the prevention of metastasis in colorectal cancer in humans is open: a nanomedicine that selectively eliminates metastatic stem cells

Nanoligent obtains the first prize in the Tech Transfer Competition in the ONCO Emergence forum

Nanoligent, the spin off created by the Directors of Units 1 and 18 of NANBIOSIS, awarded for the best company in Health Sciences given by the law firm RCD

Read More

The activity of Peptide T22 as antimicrobial drug opens new possibilities for the local control of bacterial infections related to tumors

Researchers of NANBIOSIS Units 1 and 18, from CIBER-BBN at the Institut de Biotecnologia i de Biomedicina (IBB-UAB) and the Institut de Recerca Sant Pau (IIB-Sant Pau) presents the finding of a significant antimicrobial activity in the targeting peptide T22, which is used for antitumor therapy directed against CXCR4 + stem cells, with clinical interest in more than 20 types of human cancer, including colorectal cancer.

The study describes how said activity has a significant effect on several bacterial species of clinical importance: “we have detected antimicrobial activity associated with T22 and inhibition of biofilm formation on Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa, explains Antonio Villaverde, one of the coordiantors of the study . The researcher adds that “the T22 peptide does not show cytotoxicity on mammalian cells or hemolytic activity and is active when it is shown in protein nanoparticles through genetic fusion.”

For the develiopment of this research protein production was partially performed by the unit 1 of the ICTS NANBIOSIS, Protein Production Platform (PPP).

In short, the discovery of T22 as AMP is of interest, not only because of its addition to the catalog of antibacterial drugs, but its clinical uses could allow its combined and multivalent application in complex clinical conditions, such as colorectal cancer, which could benefit from the synchronous destruction of cancer stem cells and local bacterial biofilms.

The stable collaboration between the NBT group led by Esther Vazquez and Antonio Villaverde, the GOA group led by Ramón Mangues and the spin-off of the UAB Nanoligent, develops systemic targeted therapies using T22 to functionalize different types of cytotoxic nanoparticles, with which the destruction of metastatic stem cells and the consequent reduction in the number of metastases. “The dual activity of T22 as a targeting agent and as an antimicrobial drug may offer a new local treatment route, through which bacterial infections related to the development and progression of tumors are controlled locally,” the authors conclude.

Article of reference:

Naroa Serna, José V. Carratalá, Oscar Conchillo-Solé, Carlos Martínez-Torró, Ugutz Unzueta, Ramón Mangues, Neus Ferrer-Miralles, Xavier Daura, Esther Vázquez, and Antonio Villaverde. 2021. “Antibacterial Activity of T22, a Specific Peptidic Ligand of the Tumoral Marker CXCR4” Pharmaceutics 13, no. 11: 1922. https://doi.org/10.3390/pharmaceutics13111922

Read More

Collaboration of two NANBIOSIS units in the Valorisation Project “ADVERT”

The Project ADVERT (Advanced Extracellular Vesicles for Enzyme Replacement Therapy) is a research valorisation project recently granted by CIBER.

The project pursues to advance the development of extracellular vesicles as treatments for lysosomal diseases, specially to bring new therapies to treat FABRY disease.

The ADVERT Project will count on the active particpation of two NANBIOSIS units of CIBER-BBN:

The project will be financed with € 20,000.

The CIBER-BBN transfer program

The CIBER-BBN transfer program through its call for transfer and valorization projects has been designed to promote the transfer to the industrial sector of scientific or technological results derived from the research carried out by the CIBER-BBN groups. These transfer projects will make it possible to support the commercialization of said results, since there is a company that has shown interest in them and that provides at least, the same financing than CIBER-BBN for their achievement.

The call for valorisation projects is in its fourth edition, having already financed a total of fourteen projects.

Read More

A more effective nanomedicine has been developed for the treatment of Fabry rare disease.

28 February: International Rare Disease Day

  • This is one of the major achievements of the European Smart4Fabry project, which is now coming to an end after four years of work.
  • The results have been made possible by nanotechnology and the approach developed could be applied to other drugs in the future.
  • The new drug improves on current treatments and helps reduce costs and improve patients’ quality of life.

Barcelona, 26 February 2021.- The advance of nanomedicine opens up new possibilities in the development of drugs, such as the one recently developed for the rare disease Fabry, with improved efficacy compared to existing authorised treatments.

Thus, the European Smart4Fabry project has come to an end with one of the best results possible: the designation of a new orphan drug by the European Commission and the possibility of making progress in the treatment of Fabry, a rare disease that is estimated to affect approximately 2.6 out of every 10,000 people in the EU.

It is a chronic debilitating disease due to recurrent episodes of severe pain that is difficult to control with conventional analgesics, and it is life-threatening due to renal failure and associated cardiovascular and cerebrovascular complications.

With this designation we have made a major achievement, not only for Fabry patients, but also for other pathologies that can benefit from this same approach, made possible by nanotechnology,” explained Nora Ventosa, Scientific Director of NANBIOSIS Unit 6 Biomaterial Processing and Nanostructuring Unit of CIBER-BBN and ICMAB-CSIC who coordinated the project.

Need for new treatments for the disease

This disease, also known as Anderson-Fabry disease, represents the most common lysosomal storage disorder. It is caused by an absence or deficiency of the enzyme α-galactosidase A (GLA), which results in the lysosomal accumulation of globotriaosylceramide (Gb3) and its derivatives in the lysosomes of a wide variety of tissues, responsible for the clinical manifestations. Current treatments consist of intravenous administration of the GLA enzyme, but have limited efficacy and poor biodistribution.

The drug that has been developed is a new nanoformulation of GLA (nanoGLA) that improves efficacy compared to the reference treatment with non-nanoformulated GLA. “The third-generation liposomal product we have developed in the project has demonstrated, at preclinical level, improved efficacy, compared to authorised enzyme replacement treatments, demonstrating that the strategy of supplying the affected cells with the GLA enzyme via the smart nanoliposome is highly successful”, explained Ibane Abasolo, Scientific Coordinator of NANBIOSIS U20 of CIBER-BBN and VHIR, who is responsible for the efficacy studies in the project.

The nanoGLA product was obtained using DELOSTM formulation technology, an innovative platform for the robust production of nanomedicines in an efficient and sustainable manner.

The Committee for Orphan Medicinal Products, the European Medicines Agency’s (EMA) committee responsible for recommending orphan designation of medicines for rare diseases, has considered these results to have a clinically relevant advantage over current enzyme replacement therapies.

The designation of orphan drug, in addition to recognising the significant benefit of the new nanomedicine over products already licensed for Fabry disease, has important implications for the translation of the new therapeutic product from bench to bedside.

Those responsible for these results, including several CIBER-BBN groups, highlight that the new formulation helps to improve treatments, reduce costs, and improve the quality of life of Fabry patients.

Interdisciplinarity and public-private collaboration

The Smart4Fabry project has been running since 2017 thanks to European funding of €5.8 million, from the Horizon 2020 programme. This was possible thanks to the collaboration of several CIBER-BBN groups and NANBIOSIS Units at the Institute of Materials Science of Barcelona (ICMAB-CSIC) with the abouve mentioned NANBIOSIS Unit 6, the Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) with NANBIOSIS Unit 3 of
Synthesis of Peptides Unit
, led by Miriam Royo, the Vall d’Hebron Research Institute (VHIR) with NANBIOSIS Unit 20 and the Institute of Biotechnology and Biomedicine of the Autonomous University of Barcelona (IBB-UAB) with NANBIOSIS Unit 1 Protein Production Platform (PPP), whose work in this project was led by José Luis Corchero. It has also been necessary to contribute knowledge from different academic and business disciplines.

The project consortium also includes public institutions such as the University of Aarhus (Denmark), Technion Israel Institute of Technology (Israel) and Joanneum Research (Austria); and the companies Biokeralty (Spain); Nanomol Technologies SL (Spain); BioNanoNet (Austria), Drug Development and Regulation SL (Spain), the Covance Laboratories LTD group (UK) and Leanbio SL (Spain), which have provided the necessary expertise in nanotechnology and biotechnology, physicochemical characterisation, in vitro and in vivo biological evaluation, formulation and grading of nanomedicines, and pharmaceutical development and production under the guidelines of regulatory agencies.

CIBER and CSIC, promoters of orphan drugs

Orphan Drug Designations (ODDs) seeks to facilitate the arrival of treatments for rare diseases on the market. Several incentives are associated with ODDs, such as market exclusivity, fee reductions and specific scientific advice.

To date, CIBER has promoted eleven orphan drugs designated by the EMA, mainly from the thematic area of Rare Diseases (CIBERER), this being the first from CIBER-BBN.

On the other hand, this is the fourth ODD that the CSIC has obtained, and the first time it refers to a nanoformulated drug.

Orphan drug designation by the European Medicines Agency has several advantages, such as receiving a commercialisation authorisation for 10 years during which similar products cannot be commercialised, the availability of free or low-cost scientific advice and support protocols, and exemption from designation fees. In addition, entities developing orphan drugs have access to specific grants from the European Union and member states’ programmes.

More information

Scientific Culture Unit UCC+i CIBER cultura.cientifica@ciberisciii.es

Other related news

Read More

An Auristatin-based nanoconjugate reduces leukemia burden in a disseminated AML model

Researchers of the Nanotoxicology Unit of the the CIBER-BBN ICTS NANBIOSIS (u18-nanotoxicology-unit), leaded by Ramon Mangues and Isolda Casanova at the Research Institute of the Hospital de Sant Pau and of the NANBIOSIS (nanbiosis.es) Protein Platform (u1-protein-production-platform-ppp) leaded by Antonio Villaverde and Neus Ferrer Miralles of the Institute of Biotechnology and Biomedicine at the Autonomous University of Barcelona, have developed a novel protein-Auristatin nanoconjugate that specifically targets CXCR4-overexpressing acute myeloid leukemia (AML) cells. It selectively accumulates in target cancer cells expressing this receptor and deliver the toxin Auristatin within their cytosol. There, Auristatin potently blocks microtubule polymerization, provoking mitotic catastrophe, followed by apoptotic induction. Since Auristatin can kill both cycling and quiescent cells, the administration of the nanoconjugate at repeated dosage is able to dramatically reduce the leukemia burden in circulating blood, bone marrow, liver and spleen; thus, producing a potent antineoplastic effect, in the absence of systemic toxicity.

It is known that CXCR4 overexpression is involved in bopne marrow colonization by leukemic cells, displacing normal hematopoietic stem cells, an effect that associates with quiescence, resistance to classical chemotherapy, development of minimal residual disease and relapse, which leads to shorter patient survival.  Therefore, this Auristatin-based nanoconjugate could be a novel approach for the treatment of CXCR4-overexpressing AML that relapses after classical chemotherapy, offering hope to an effective clinical translation and industrial transfer, aqn activity that which could increase the effectiveness of AML treatment while reducing the adverse effect associated with current therapy.

Reference:

Pallarès V, Unzueta U, Falgàs A, Sánchez-García L, Serna N, Gallardo A, Morris GA, Alba-Castellón L, Álamo P, Sierra J, Villaverde A, Vázquez E, Casanova I, Mangues R. An Auristatin nanoconjugate targeting CXCR4+ leukemic cells blocks acute myeloid leukemia dissemination. doi: 10.1186/s13045-020-00863-9.

Read More

A nanotoxin targeting the receptor CXCR4 blocks lymphoma dissemination

Researchers at the Nanotoxicology Unit of CIBER-BBN ICTS NANBIOSIS (u18-nanotoxicology-unit), led by Ramon Mangues and Isolda Casanova of the Research Institute at the Hospital de Sant Pau and the Researchers of the NANBIOSIS (nanbiosis.es) Protein Production Platform (u1-protein-production-platform-ppp) led by Antonio Villaverde and Neus Ferrer Miralles of the Institute of Biotechnology and Biomedicine at the Autonomous University of Barcelona, have participated in the development of a novel protein nanoparticle that incorporates the Exotoxin of the bacteria Pseudomonas aeruginosa, capable of targeting lymphoma cells that overexpress the CXCR4 receptor.

They internalize selectively in target cancer cells through CXCR4 receptor-mediated endocytosis due to the incorporation in its nanostructure of the T22 peptide ligand, with multivalent display (10 peptides per nanoparticle). In addition, it contains an endosomal escape domain to avoid lysosomal degradation to achieve the delivery of undegraded exotoxin in the target cancer cell cytosol. There, the exotoxin blocks protein translation by inhibiting the elongation factor 2, leading to the induction of apoptosis in a diffuse large B-cell lymphoma model blocking their dissemination throughout the body, in the bone narrow, lymph nodes and the liver. Since lymphoma cells overexpressing the CXCR4 receptor are associated with increased dissemination and resistance to Rituximab plus CHOP chemotherapy, this novel nanomedicine could be useful for its clinical translation, especially for the treatment of lymphoma patients that relapse after classical chemotherapy.

The bioluminescent follow-up of cancer cells and toxicity studies has been performed in the ICTS NANBIOSIS using its CIBER-BBN Nanotoxicology Unit Protein production has been also performed at the ICTS NANBIOSIS  Init 1 PPP

Reference:

Falgàs A, Pallarès V, Serna N, Sánchez-García L, Sierra J, Gallardo A, Alba-Castellón L, Álamo P, Unzueta U, Villaverde A, Vázquez E, Mangues R, Casanova I. Selective delivery of T22-PE24-H6 to CXCR4+ diffuse large B-cell lymphoma cells leads to wide therapeutic index in a disseminated mouse model. doi: 10.7150/thno.43231. eCollection 2020.

Read More