+34 620 10 75 37info@nanbiosis.com

News

nanbiosis news

Nanoligent, whoes founders are leaders of NANBIOSIS units, raises €1M in Series Seed financing

Barcelona, Spain – Milan, Italy, February 3rd, 2022 – Nanoligent SL, a biotech company specialized in the development of nanotechnology-based cancer treatments, today announces the completion of the first closing of a Seed financing round of €1M. The round has been led by members of Italian Angels for Growth, the largest network of business angels in Italy, through the investment vehicle Nanolinvest, and AVANTECA Partners, a Swiss privately held asset management firm, both specialized in supporting innovative early-stage life-science companies primarily in Europe. An equity campaign, is still ongoing on Doorway, an online investment platform, thus promising to provide additional funding for the company.

NANOLIGENTis spin off from the Universidad Autónoma de Barcelona and Research Institute of the Hospital de Sant Pau – IIB Sant Pau that was created by the Directors of NANBIOSIS Units U18. Nanotoxicology Unit, Ramón Mangues and U1. Protein Production Platform (PPP), Antoni Villaverde, together with Esther Vázquez and Manuel Rodriguez

Nanoligent, is focused on the development of new drugs for the treatment of more than 20 different metastatic cancer types. The lead molecule is based on the targeted elimination of cancer cells overexpressing the CXCR4 receptor, a recognized biomarker for poor prognosis and therapy resistance. Nanoligent is developing a new proprietary nano-technological platform, with the potential to overcome current limitations of Antibody-Drug-Conjugates. The CXCR4 is overexpressed in a significant number of patients of more than 20 different tumors.

The financing will allow Nanoligent to complete the pre-clinical development in a variety of tumor types and to move its lead candidate into pre-IND stage.

The investor syndicate will join the Nanoligent’s Board which will consist of: Michele Marzola (IAG), Michael Milos (Avanteca Partners), Manuel Rodríguez (Chairman) and Montserrat Cano (CEO).

“We started the evaluation of a possible investment in Nanoligent one year ago and since then we have received enthusiastic responses from Key Opinion Leaders and Industry Experts. It has been a real pleasure working with the team at Nanoligent; we are impressed by their scientific depth and professional responses. We are continuing our fundraise for this deal together with Doorway, a fintech investing platform”, said Michele Marzola who together with Alessandro Toniolo are co-champions from IAG in this investment.

“We are fascinated by the technological capabilities of the platform and the professionalism of the team. The whole process was an intense, productive and very professional exchange. We are looking forward to partner with the management of Nanoligent to develop this highly innovative platform, which has the potential to transform cancer therapy” said Michael Milos from AVANTECA Partners.

“It is our great pleasure to welcome Michele Marzola and Michael Milos, whose expertise and experience will be a valuable addition to the company to accomplish its ambitious development plans over the next 18 months” said Montserrat Cano, CEO of Nanoligent.

Doorway, at its turn, is very happy to continue fundraising with its qualified community for such an innovative technology that can achieve a significant impact in the treatment of many cancers, being Nanoligent a perfect example of Doorway’s vision of “business with an impact”.

About Nanoligent

Nanoligent was founded in 2017 by co-founder and Chairman Manuel Rodriguez Mariscal, as a spin-off coming from more than 10 years of fruitful collaboration between the Nanobiotechnology group at the Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, co-lead by full professor Antonio Villaverde and Principal Investigator Esther Vázquez, and the Oncogenesis and Antitumor Drug Group at the Biomedical Research Institut Sant Pau of the Hospital de la Santa Creu i Sant Pau, headed by full professor Ramon Mangues, the three of them also co-founders of the company. Montserrat Cano joined the company in 2020, with more than 15 years of experience in pharma and biotech companies. The aim of the company is to develop a pioneering technological platform based on protein-drug nanoconjugates to target metastasis across several tumor types.

 About Italian Angels for Growth

IAG, founded in 2007, is a leader in the Italian seed venture capital: more than 270 protagonists of the entrepreneurial, financial and industrial world that invest time, skills and capital for the growth of innovative startups. Italian Angels for Growth, in more than ten years of activity, has analyzed more than 6,500 startups and its members have made over 100 investments, for a total of over 300 million euros invested by IAG members and co-investors. IAG business angels support innovative projects financially by investing their own capital, but at the same time, thanks to the mix of skills of the members, support the founders of the startups in the definition of the business model in all its aspects.

 About AVANTECA Partners

AVANTECA Partners is a Swiss-based, privately held asset management company that invests in early-stage life science companies.

Related News

A new pathway for the prevention of metastasis in colorectal cancer in humans is open: a nanomedicine that selectively eliminates metastatic stem cells

Nanoligent obtains the first prize in the Tech Transfer Competition in the ONCO Emergence forum

Nanoligent, the spin off created by the Directors of Units 1 and 18 of NANBIOSIS, awarded for the best company in Health Sciences given by the law firm RCD

Read More

Multivalent self-assembled platforms for the delivery of chemotherapeutic drugs

Twenty years ago, the 4 February was declared World Cancer Day with the global challenge of cancer would not be forgotten. Since then, huge progress has been made to understand, prevent, diagnose, and treat cancer.

NANBIOSIS as an ICTS (Singular Scientific and Technical infrastructures) for biomedical research plays a very important role in the fight against cancer.

Dr. Miriam Royo, who leads NANBIOSIS unit 3 of Synthesis of Peptide, explains one of the projects in which the ICTS is involved in relation with cancer therapy.

The improvement of solubility and stability of clinically approved chemotherapeutic drugs still represent a big challenge in cancer therapy. In fact, many of these drugs have low water solubility, which forces to administer larger volume doses to achieve the desired biological effect, and increases the side effects suffered from patients. The active principle can be chemically modified to increase the solubility, and administered as prodrug which, however, has to be enzymatically metabolized to have therapeutic effect and only a low percentage of the free drug is achieved. Moreover, some of the chemotherapeutic drugs are unstable at physiological conditions due to their chemical structure, and rapidly degrades before reaching the tumor tissue, further reducing the effectiveness of the treatment. Drugs commonly used in clinical chemotherapy treatments for advanced colorectal cancer and triple negative breast cancer, such as SN38, 5-fluorouracil (5-FU) and paclitaxel (PTX), have presented these problems, which affect their efficacy and tolerance to treatment by patients.

Drug delivery nanosystems based on biocompatible polyethylene glycol (PEG)-based multivalent platforms conjugated to hydrophobic drugs (SN38, PTX among others) are developed by the Multivalent Systems for Nanomedicine (MS4N) goup of Centro de Investigación Biom´dcia en Red (CIBER-BBN) at the Institute for Advanced Chemistry of Catalonia (IQAC-CSIC). The resulting water-soluble conjugates have also the ability to self-assemble in aqueous media in nanoscale micellar structures improving the pharmacokinetic profile of drugs. In these systems, the intact active principle can be released in a controlled manner thanks to the presence of degradable bonds, between the drug and the polymer, which are sensitive to chemical or biological stimuli, favoring its accumulation in tumor.

Systems containing only one drug (SN38 or PTX) for monotherapy and two different drugs (as SN38 and 5-FU) for combined therapy treatments are developed to improve the therapeutic efficacy of the free drugs and decrease their secondary effects.  The multivalence nature of these systems also allows the possibility to add targeting agents, such as tumor specific peptide ligands thus increasing the specificity of the platforms towards the cancer cells. These peptide ligands have been produced at the Synthesis of Peptides Unit (U3) of NANBIOSIS.

This project (RTI2018-093831-B-I00) is funded by MICIN/AEI/10.13039/501100011033 and by “ERDF A way to of making Europe and performed in collaboration with Dr. Ibane Abasolo group of CIBER-BBN at Vall d’Hebron Research Institute (VHIR) and the In Vivo Experimental Platform (U20) of NANBIOSIS under the frame of CIBER BBN intramural collaborative projects (PolyPlaTher, Colocomb and Nanomets).

Read More

Submissions open for Special Issue of MDPI on Fluorescent Organic Nanoparticles for Bioimaging and Theragnostics

Nora Ventosa and Mariana Köber, from NANBIOSIS Unit 6 of CIBER-BBN and ICMAB-CSIC, and Judit Morlà-Folch, from the BioMedical Engineering and Imaging Institute at the Icahn School of Medicine at Mount Sinai, New York, are editors of the Special Issue of MDPI Pharmaceutics.

The Special Issue on Fluorescent Organic Nanoparticles for Bioimaging and Theragnostics belongs to the “Nanomedicine and Nanotechnology” section and has a deadline for manuscript submissions on 25 July 2022.

The guest editors explain the main topic of this Special Edition:

“Fluorescence-based techniques play an essential role in the study of biological events in tissues and animals due to their specificity and noninvasive nature. However, realizing the whole potential of today’s fluorescence imaging and detection in terms of speed, resolution, and sensitivity, requires fluorescent labels that combine stability, a very high brightness, and a high photostability.

In this regard, novel, bright and stable organic fluorescent nanoparticles have evolved rapidly during the last few years, allowing further development of novel, experimental treatments and imaging strategies, including photodynamic therapy or image-guided surgery.

These results shine a spotlight on fluorescent nanomaterials as promising candidates for imaging and theragnostics in several health disorders. In this Special Issue, we invite authors to report on their recently developed, fluorescent, organic nanoparticles for imaging, diagnostics, and the treatment of diseases.”

If you have a relevant manuscript, you can submit it at MDPI in the submission form before 25 July 2022. All papers will be peer-reviewed, and research articles, review articles or short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website. More information on submission here

About the Pharmaceutics MDPI Journal

Pharmaceutics (ISSN 1999-4923) is an online open access journal on the science and technology of pharmaceutics and biopharmaceutics. The scientific community, the wider community and the general public have unlimited and free access to the content as soon as a paper is published; this open access to your research ensures your findings are shared with the widest possible audience. Please consider publishing your impressive work in this high quality journal. We would be pleased to welcome you as one of our authors.” – Editor-in-Chief Prof. Dr. Yvonne Perrie from the Strathclyde Institute of Pharmacy and Biomedical Sciences at the University of Strathclyde.

Source of information: ICMAB-CSIC

Read More

Best Emergeging Researcher Award in the Biomedical Area to Edorta Santos

Edorta Santos Vizcaíno has been awarded as Best Emerging Researcher in the biomedical area by the Bioaraba Health Research Institute in the XXII edition of the Research and Innovation Conference.

This award aims to recognize the work of researchers under the age of 40 who carry out their research activity in any public center of the Araba Health Network (OSI ARABA UNIVERSITY HOSPITAL / BIOARABA). The main award´’s criteria are the quality of the research carried out, active participation in public and private research projects, fidelity to the line of biomedical research and the usefulness and interest of the research developed for the environment are valued. The award also carries a financial endowment destined to continue promoting the research career of the awarded person.

Edorta Santos Vizcaíno (NANBIOSIS Unit 10 “Drug Formulation”) has a degree in Biochemistry and a doctorate in Pharmacy, with an international mention and an extraordinary award, from the UPV / EHU. He has been part of the research group NanoBioCel of the UPV / EHU, Consolidated Group of Excellence of the Basque university system, since 2006. In the same way, he is a member of the Center for Biomedical Research in Network for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), a consortium dependent on the Carlos III Health Institute through the Ministry of Science and Innovation, and the Bioaraba Health Research Institute. Edorta has extensive experience in cell therapy and drug delivery systems. During the last years, his research has focused on the biomedical application of different biomaterials (for example, alginate, gelatin, collagen), mesenchymal stem cells (MSC) and their secretome (extracellular vesicles and soluble factors), in order to exert a immunomodulatory and regenerative effect in the treatment of immune-mediated inflammatory diseases (for example, inflammatory bowel disease, IBD) and the regeneration of chronic wounds, among other applications.

Bioaraba‘s mission is to develop research and innovation of excellence and quality that allows the translation of its results aimed at solving the health problems of the population, also promoting scientific research and for this, it annually carries out the Research and Innovation Conference.

Read More

New fluorescent nanovesicles for intracellular biomarker detection

A new work by researchers from the CIBER-BBN at the Barcelona Institute of Materials Science ICMAB-CSIC, together with a team from the University of Rome Tor Vergata, presents new nanovesicles capable of crossing biological barriers such as cell membranes, maintaining their sensory capacity, making them attractive probes for intracellular biomarker detection.

“The development of probes capable of detecting the biological environment and signaling the presence of a specific target molecule is a challenge with relevance in a variety of biomedical applications, from drug administration to diagnostic tools” says Mariana Köber, one of those responsible of the investigation together with Nora Ventosa and Alessandro Porchetta from the University of Rome Tor Vergata.

In this work, which has been published in Advanced Functional Materials, the design of functionalized fluorescent nanovesicles with biomimetic DNA capable of translating their binding with a target molecule into an optical output is presented, through a change in the transfer of resonance energy. Förster (FRET) and fluorescent emission. These Quatsomes (QS) nanovesicles are an emerging class of highly stable small unilamellar vesicles ≈50–100 nm in diameter, formed by the self-assembly of ionic surfactants and sterols in aqueous media. Their high stability, also in body fluids, unilaminarity and particle-to-particle homogeneity make them an attractive soft material for detection applications. “QS nanovesicles are loaded with fluorescent waves based on amphiphilic nucleic acids to produce programmable FRET active nanovesicles that function as highly sensitive signal transducers,” she explains.

The CIBER-BBN researchers have participated in the characterization of the photophysical properties of these nanovesicles and the highly selective detection of clinically relevant microRNAs with sensitivity in the nanomolar range has been demonstrated. This production of nanovesicles and their physicochemical characterization has been carried out thanks to the services of ICTS NANBIOSIS, through its unit 6 of Biomaterials Processing and Nanostructuring at the ICMAB-CSIC.

According to the authors, the proposed strategy could easily be adapted to the detection of different biomarkers: “we hope to achieve a bioimaging platform for the detection of a wide range of nucleic acids and other clinically relevant molecules in body fluids or directly in cells, thanks to the ability of Quatsomes for intracellular delivery. “

  • Figure: Schematic representation of the DNA-grafted QS nanovesicles. Adv Funct Materials, Volume: 31, Issue: 46, First published: 11 August 2021, DOI: (10.1002 / adfm.202103511)

Article of reference

Marianna Rossetti, Lorenzo Stella, Judit Morlà-Folch, Sara Bobone, Ariadna Boloix, Lorena Baranda, Danila Moscone, Mònica Roldán, Jaume Veciana, Miguel F. Segura, Mariana Köber… Engineering DNA-Grafted Quatsomes as Stable Nucleic Acid-Responsive Fluorescent Nanovesicles . https://doi.org/10.1002/adfm.202103511

Read More

The activity of Peptide T22 as antimicrobial drug opens new possibilities for the local control of bacterial infections related to tumors

Researchers of NANBIOSIS Units 1 and 18, from CIBER-BBN at the Institut de Biotecnologia i de Biomedicina (IBB-UAB) and the Institut de Recerca Sant Pau (IIB-Sant Pau) presents the finding of a significant antimicrobial activity in the targeting peptide T22, which is used for antitumor therapy directed against CXCR4 + stem cells, with clinical interest in more than 20 types of human cancer, including colorectal cancer.

The study describes how said activity has a significant effect on several bacterial species of clinical importance: “we have detected antimicrobial activity associated with T22 and inhibition of biofilm formation on Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa, explains Antonio Villaverde, one of the coordiantors of the study . The researcher adds that “the T22 peptide does not show cytotoxicity on mammalian cells or hemolytic activity and is active when it is shown in protein nanoparticles through genetic fusion.”

For the develiopment of this research protein production was partially performed by the unit 1 of the ICTS NANBIOSIS, Protein Production Platform (PPP).

In short, the discovery of T22 as AMP is of interest, not only because of its addition to the catalog of antibacterial drugs, but its clinical uses could allow its combined and multivalent application in complex clinical conditions, such as colorectal cancer, which could benefit from the synchronous destruction of cancer stem cells and local bacterial biofilms.

The stable collaboration between the NBT group led by Esther Vazquez and Antonio Villaverde, the GOA group led by Ramón Mangues and the spin-off of the UAB Nanoligent, develops systemic targeted therapies using T22 to functionalize different types of cytotoxic nanoparticles, with which the destruction of metastatic stem cells and the consequent reduction in the number of metastases. “The dual activity of T22 as a targeting agent and as an antimicrobial drug may offer a new local treatment route, through which bacterial infections related to the development and progression of tumors are controlled locally,” the authors conclude.

Article of reference:

Naroa Serna, José V. Carratalá, Oscar Conchillo-Solé, Carlos Martínez-Torró, Ugutz Unzueta, Ramón Mangues, Neus Ferrer-Miralles, Xavier Daura, Esther Vázquez, and Antonio Villaverde. 2021. “Antibacterial Activity of T22, a Specific Peptidic Ligand of the Tumoral Marker CXCR4” Pharmaceutics 13, no. 11: 1922. https://doi.org/10.3390/pharmaceutics13111922

Read More

New graphene-based neural probes improve detection of epileptic brain signals

A study published in Nature Nanotechnology shows that flexible brain probes made of graphene micro-transistors can be used to record pathological brain signals associated with epilepsy with excellent fidelity and high spatial resolution. This research was led by the Institute of Microelectronics of Barcelona (IMB-CNM-CSIC), the Catalan Institute of Nanoscience and Nanotechnology (ICN2) and the University College London Queen Square Institute of Neurology (UK).

The ability to record and map the full range of brain signals using electrophysiological probes will greatly advance our understanding of brain diseases and aid the clinical management of patients with diverse neurological disorders. However, current technologies are limited in their ability to accurately obtain with high spatial fidelity ultraslow brain signals. In a paper published today in Nature Nanotechnology, an international team of researchers report a flexible neural probe made of graphene-based field-effect transistors capable of recording the full spectrum of brain signals, including infraslow; and demonstrate the ability of these devices to detect with high fidelity electrographic signatures of the epileptic brain.

Epilepsy is the most common serious brain disorder worldwide, with up to 30% of people unable to control their seizures using traditional anti-epileptic drugs. For drug-refractory patients, epilepsy surgery may be a viable option. Surgical removal of the area of the brain where the seizures first start can result in seizure freedom; however, the success of surgery relies on accurately identifying the seizure onset zone (SOZ).  Epileptic signals span over a wide range of frequencies –much larger than the band monitored in conventional EEG.  Electrographic biomarkers of a SOZ include very fast oscillations as well as infraslow activity and direct-current (DC) shifts. The latter, in particular, can provide very relevant information associated with seizure onset but are seldom used due to the poor performance of current probes to record these types of slow brain signals. Application of this technology will allow researchers to investigate the role infraslow oscillations play in promoting susceptibility windows for the transition to seizure, as well as improving detection of clinically relevant electrophysiological biomarkers associated with epilepsy.

The graphene depth neural probe (gDNP) developed by the authors of this research consists of a millimetre-long linear array of micro-transistors imbedded in a micrometre-thin polymeric flexible substrate. The flexible gDNP devices were chronically implanted in small animal models of seizures and epilepsy. The implanted devices provided outstanding spatial resolution and very rich wide bandwidth recording of epileptic brain signals over weeks. In addition, extensive chronic biocompatibility tests confirmed no significant tissue damage and neuro-inflammation, attributed to the biocompatibility of the used materials, including graphene, and the flexible nature of the gDNP device.

Future clinical translation of this technology offers the possibility to identify and confine much more precisely the zones of the brain responsible for seizure onset before surgery, leading to less extensive resections and better outcomes. Ultimately, this technology can also be applied to improve our understanding of other neurological diseases associated with ultraslow brain signals, such as traumatic brain injury, stroke and migraine.

“The development of this graphene-based neurotechnology was possible thanks to the microfabrication capacities of the Micro and Nanofabrication Clean Room”, explains Anton Guimerà about the Unique Science and Technology Infrastructure (ICTS) recognized by the Ministry of Science and Innovation.

This study was led by ICREA Prof. Jose A Garrido, head of the ICN2 Advanced Electronic Materials and Devices Group, Dr Anton Guimerà-Brunet, from the Institute of Microelectronics of Barcelona (IMB-CNM-CSIC) and CIBER-BBN and researcher of NANBIOSIS Unit 8 Micro-nanotechnology unit, and Dr Rob Wykes, from the University College London Queen Square Institute of Neurology (UK) & the Nanomedicine Lab of the University of Manchester (UK). First author of the paper is Dr Andrea Bonaccini Calia, a former member of Prof. Garrido’s group. This study was conducted in the frame of the EU project Graphene Flagship. It benefited from multidisciplinary collaborations and received valuable contributions from researchers at the Nanomedicine Lab of the University of Manchester (UK), the Universitat Autònoma de Barcelona (Spain) and g.tec medical engineering GmbH (Austria).

The authors acknoledged the participation of NANBIOSIS Unit 8 Micro-nanotechnology unit, (from CIBER-BBN at IMB-CNM-CSIC) led by Dr. Rosa Villa, in the research in the article of reference.

Reference article:

Andrea Bonaccini Calia, Eduard Masvidal-Codina, Trevor M. Smith, Nathan Schäfer, Daman Rathore, Elisa Rodríguez-Lucas, Xavi Illa, Jose M. De la Cruz, Elena Del Corro, Elisabet Prats-Alfonso, Damià Viana, Jessica Bousquet, Clement Hébert, Javier Martínez-Aguilar, Justin R. Sperling, Matthew Drummond, Arnab Halder, Abbie Dodd, Katharine Barr, Sinead Savage, Jordina Fornell, Jordi Sort, Christoph Guger, Rosa Villa, Kostas Kostarelos, Rob Wykes, Anton Guimerà-Brunet, and Jose A. Garrido, Full bandwidth electrophysiology of seizures and epileptiform activity enabled by flexible graphene micro-transistor depth neural probes. Nature Nanotechnology, 2021. https://www.nature.com/articles/s41565-021-01041-9

Source of information: IMB-CNM-CSIC

Read More

Nora Ventosa, president of the TECNIO Association.

Nora Ventosa, Scientific Director of NANBIOSIS Unit 6, is the president of the new Association of TECNIO. the association to promote technology transfer to Catalonia that was established on November 8, 2021 with the collaboration of all Catalan universities, the I-CERCA foundation and the CSIC.

This association promotes technology transfer to companies through the connection of research groups with TECNIO, as it is the case of the DBA. An initiative that includes the support of the Generalitat per mitjà d’ACCIÓ, the agency for the competitiveness of the company of the Departament d’Empresa i Treball.

The new Associació TECNIO is made up of 59 research groups that currently hold the TECNIO accreditation granted by ACCIÓ, a seal that identifies technology developers in Catalonia to facilitate the connection between the companies.

The objective of this new entity is to group and make visible the activity of the research groups within the TECNIO sector, encourage collaboration and promote them as an instrument of connection between the business sector and the administration. As part of the Autonomous University of Barcelona, ​​the University of Barcelona, ​​the University of Girona, the University of Lleida, the Polytechnic University of Catalonia, the Pompeu Fabra University, the Ramon Llull University, the Rovira i Virgili University, the University of Vic , the I-CERCA foundation and the CSIC with the aim of accelerating the transfer of knowledge from the research laboratory environment to society.

At the presentation ceremony of the new association, which took place at the Autonomous University of Barcelona (UAB), participated the Minister of Business and Employment, Roger Torrent i Ramió; the Regional Minister for Research and Universities, Gemma Geis; the General Director of Industry and CEO of ACCIÓ, Natàlia Mas; the general director of Innovation and Entrepreneurship, Lluís Juncà; the rector of the UAB, Javier Lafuente; and the president of the TECNIO Association, Nora Ventosa.

Source of information:

https://govern.cat/salapremsa/notes-premsa/415363/crea-lassociacio-tecnio-impulsar-transferencia-tecnologica-catalunya

Read More

New results evidence new biomarkers for early diagnosis of P. aeruginosa infections

Pseudomonas aeruginosa is a common multidrug-resistant pathogen that causes acute and chronic infections. However, P. aeruginosa, as many other bacterial species, has developed resistance to antibiotics being difficult to treat. For this reason diagnostic methods allowing detection at early  stages of the infection are required  and, therefore, efficient biomarkers of infection are very helpful. These fast diagnosis will help on the subsequent therapeutic treatment.

The Nb4D group of CIBER-BBN and IQAC-CSIC (led by M.-Pilar Marco) has recently conducted a research to develop a highly sensitive, specific and reliable immunochemical assay to detect pyocyanin (PYO), one of the most important virulence factors of Pseudomonas aeruginosa.

The assay uses a high-affinity monoclonal antibody produced by the unit 2 of the ICTS NANBIOSIS Custom Antibody Service (CAbS) (Dr. Núria Pascual).

The microplate-based ELISA developed is able to achieve a limit of detection (LoD) of 0.07 nM, which is much lower than the concentrations reported to be found in clinical samples (130 µM in sputa and 2.8 µM in ear secretions). The ELISA has allowed the investigation of the release kinetics of PYO and 1-OHphz (the main metabolite of PYO) of clinical isolates from P. aeruginosa-infected patients. Significant differences have been found between clinical isolates obtained from patients suffering an acute or a chronic infection (~6,000 nM vs. ~8 nM of PYO content, respectively).

The results found point to a real potential of PYO as a biomarker of P. aeruginosa infection and the possibility to use such virulence factor also as a biomarker for patient stratification and for an effective management of these kinds of infections.

Article of referece:

Rodriguez-Urretavizcaya, B., Pascual, N., Pastells, C., Martin-Gomez, M.-T., Vilaplana, Ll.*, Marco. M.-P. (2021). “Diagnosis and Stratification of Pseudomonas aeruginosa Infected Patients by Immunochemical Quantitative Determination of Pyocyanin From Clinical Bacterial Isolates.” Frontiers in Cellular and Infection Microbiology 11(1215). https://doi.org/10.1016/j.jmbbm.2021.104793

Read More

Two great scientists and excellent people pioneers on Nucleic Acids Chemistry

Nucleic Acid Chemistry is an interdisciplinary discipline that combines organic chemistry, biochemistry, pharmacology, materials chemistry and biophysics. It started soon after the Watson–Crick model of DNA with the synthesis of the first dinucleotide, published in 1955. However, in the last decade, this field has blossomed, with the demonstration that Nucleic Acid Chemistry can provide innovative solutions to health problems such as vaccination, pathogen detection, and the treatment of metabolic or genetic diseases as well as providing important tools for the interrogation of cellular mechanisms.

Profesor Ramon Eritja, Scientific director of the Oligonucleotides Synthesis Platform U29 from ICTS NANBIOSIS will chair next January 13 a webinar on Frontiers in Nucleic Acid Chemistry, organized by the Journal Molecules in which some examples of the recent developments in Nucleic Acid Chemistry will be explained.

This webinar is dedicated to the memory of Prof. Enrique Pedroso one of pioneering researchers and leading Spanish scientist in Oligonucleotide and Peptide Synthesis who passed away in September of 2020. His contributions on the synthesis of modified oligonucleotides and especially oligonucleotide conjugates and cyclic oligonucleotides have opened new avenues in the search for novel applications of oligonucleotides. In addition, Enrique was deeply involved in the research and promotion of nucleic acid chemistry, as an active member of the IRT Society as well as organizing the Spanish Nucleosides Nucleotides and Nucleic Acids meetings (RANN).

During the preparation of the webinar we received the sad news of the decease of Prof. Ned Seeman from New York University who pioneered the field of DNA nanobiotechnology demonstrating that DNA is an excellent tool for the assembly of complex two and three-dimensional DNA lattices with important applications in several fields. 

We remained sad for the loss of these great scientists and excellent persons. 

Program and free registry for the webinar here

Read More