+34 620 10 75 37info@nanbiosis.com

Biomolecules production - Services

Biomolecules production – Services

U2-S04. Polyclonal Antibody Production

Polyclonal Antibody Production

Firstly, your project is discussed with our team, we help you to make the right decisions and personalize the process according to your goals. For the production of polyclonal antibodies, we select New Zealand white rabbits. Additionally, we offer the development of polyclonal antibodies in mice and rats.
We can generate policlonal antibodies towards a variety of antigens including small molecules, peptides, proteins, and cells.
Our standard immunization protocol includes monthly inoculations with Freund’s adjuvant over a 6-month period. To assess immune response progress, blood samples are taken 10 days after the second inoculation to obtain serum and determine antibody titers using ELISA. Preimmune serum is collected before the first injection for controls. At the end of the process, complete blood collection from the animal is performed surgically under anesthesia, resulting in 50-70 mL of hyperimmune serum per animal. The service provides 5 mL of bleed serum from each test for screening in customer labs.
We can follow your personalized immunization program in addition to our well-established ones.

Customer benefits

  • Scientific Consultation: We provide thorough consultation before the project begins.
  • Customized Project Proposals: We tailor project proposals to meet your specific requirements.
  • Flexible Workflow: Adjustments can be made to the workflow based on results and your specific requests.

Target customer

Organizations involved in research and development, particularly those seeking reliable and customized polyclonal antibody development services, will find our offering essential for their scientific endeavors.

Additional information

Selected references:

  • E. Montagut, J. Raya, M.-T. Martín Gómez, L. Vilaplana, B. Rodríguez-Urretavizcaya, M.-P. Marco. An Immunochemical Approach to detect the Quorum Sensing-Regulated Virulence Factor 2-Heptyl-4-Quinoline N-Oxide (HQNO) produced by Pseudomonas aeruginosa Clinical Isolates. Microbiol. Spect., 10(4), 1-12, 2022
  • E. Montagut, G. Acosta, F. Albericio, M. Royo, G. Godoy-Tena, A. Lacoma, C. Prat, J.-P. Salvador, M.-P. Marco. Direct Quantitative Immunochemical Analysis of the Autoinducer Peptide IV (AIP-IV) for Diagnosing and Stratifying Staphylococcus aureus infections. ACS Infect. Dis., 8(3), 645-656, 2022.
  • ­G. Colom, J.-P. Salvador, G. Acosta, M. Royo, M.-P. Marco. Competitive ELISA for N-Terminal pro-Brain Natriuretic Peptide (NT-proBNP) determination in human plasma. Analyst, 145, 6719-6727, 2020.
Read More

U2-S03. Preparation of Bioconjugates and Molecular Probes

Preparation of Bioconjugates and Molecular Probes

The preparation of bioconjugates and molecular probes involves a diverse array of techniques and strategies aimed at functionalizing biomolecules for various applications. This process encompasses the labeling of antibodies, haptenized proteins, and enzymes, as well as the biotinylation and fluorescent labeling of probes, and the conjugation of biomolecules with nanoparticles and other entities.

Customer benefits

  • To develop antibodies against small molecules (preparation of immunization bioconjugate)
  • Enhanced Functionality: Bioconjugation allows for specific binding of biomolecules, such as antibodies or peptides, to other entities like molecular probes or nanoparticles. This expands the applications and functionalities of biomolecules.
  • Improved Sensitivity and Specificity: Bioconjugates can enhance the sensitivity and specificity of detection techniques, such as immunohistochemistry or flow cytometry.
  • Diverse Applications: Bioconjugates find application in research, diagnostics, and therapy, benefiting research laboratories, hospitals, and pharmaceutical companies.

Target customer

  • Researchers and Scientists: Satisfy the need to label biomolecules for research studies.
  • Pharmaceutical and Biotechnology Companies: For creating therapeutic bioconjugates, imaging markers or bioconjugates for immunizations of non-immunogenic small molecules, between other.

Additional information

Selected references:

  • E. Montagut, J. Raya, M.-T. Martín Gómez, L. Vilaplana, B. Rodríguez-Urretavizcaya, M.-P. Marco. An Immunochemical Approach to detect the Quorum Sensing-Regulated Virulence Factor 2-Heptyl-4-Quinoline N-Oxide (HQNO) produced by Pseudomonas aeruginosa Clinical Isolates. Microbiol. Spect., 10(4), 1-12, 2022.
  • B. Rodriguez-Urretavizcaya, N. Pascual, C. Pastells, M. T. Martin-Gomez, Ll. Vilaplana, M.-P. Marco. Diagnostic and Stratification of Pseudomonas aeruginosa Infected Patients by Immunochemical Quantitative Determination of Pyocyanin from Clinical Bacterial Isolates. Frontiers in Cell. Infect. Microbiol., 11, 786929, 2021. DOI: 10.3389/fcimb.2021.786929.
  • J. Marrugo-Ramírez, M. Rodríguez-Núñez, M.-P Marco, M. Mir, J. Samitier. Kynurenic Acid Electrochemical Immunosensor: Blood-Based Diagnosis of Alzheimer’s Disease. Biosensors, 11(1), 20, 2021.
  • E. J. Montagut, Ll. Vilaplana, M.T. Martin-Gómez, M.-P. Marco. A High Throughput Immunochemical Method to Assess 2-Heptyl-4-Quinolone Quorum Sensing Molecule as Potential Biomarker. ACS Infect. Dis., 6(12), 3237-3246, 2020.
  • M. Broto, R. McCabe, R. Galve, M.-P. Marco. A high-specificity immunoassay for the therapeutic drug monitoring of ciclophosphamide. Analyst, 144, 5172-5178, 2019.
Read More

U2-S02. Hapten design and synthesis

Hapten design and synthesis

Haptens are small molecules capable of eliciting an immune response when conjugated to a carrier protein. They serve as antigens for antibody production. The service designs and produces tailored haptens to match the target analyte, ensuring the desired features of the resulting antibody.

This process includes:

  • Selecting the most suitable position on a drug molecule to attach a linker, maximizing specificity, sensitivity, and immunogenicity of the immunogen
  • Performing total synthesis to create the hapten with a linker when the parent drug molecule lacks a functional group suitable for conjugation synthesis.
  • Designing and synthesizing the linker with the optimal length.

Customer benefits

Some specific advantages that customers gain by utilizing this service include:

  • Adaptation of haptens to meet specific customer needs.
  • Production of highly specific and  antibodies.
  • Added value in research and development by obtaining personalized immunological tools.
  • Essential for organizations involved in drug discovery, diagnostics, and therapy.

Target customer

Target customer Researchers, scientists, and professionals involved in research and development in various fields including food safety and environmental control, biomedicine, diagnostics, drug discovery, and therapeutic development.

Additional information

Selected references:

  • E. Montagut, J. Raya, M.-T. Martín Gómez, L. Vilaplana, B. Rodríguez-Urretavizcaya, M.-P. Marco. An Immunochemical Approach to detect the Quorum Sensing-Regulated Virulence Factor 2-Heptyl-4-Quinoline N-Oxide (HQNO) produced by Pseudomonas aeruginosa Clinical Isolates. Microbiol. Spect., 10(4), 1-12, 2022.
  • B. Rodriguez-Urretavizcaya, N. Pascual, C. Pastells, M. T. Martin-Gomez, Ll. Vilaplana, M.-P. Marco. Diagnostic and Stratification of Pseudomonas aeruginosa Infected Patients by Immunochemical Quantitative Determination of Pyocyanin from Clinical Bacterial Isolates. Frontiers in Cell. Infect. Microbiol., 11, 786929, 2021. DOI: 10.3389/fcimb.2021.786929.
  • J. Marrugo-Ramírez, M. Rodríguez-Núñez, M.-P Marco, M. Mir, J. Samitier. Kynurenic Acid Electrochemical Immunosensor: Blood-Based Diagnosis of Alzheimer’s Disease. Biosensors, 11(1), 20, 2021.
  • E. J. Montagut, Ll. Vilaplana, M.T. Martin-Gómez, M.-P. Marco. A High Throughput Immunochemical Method to Assess 2-Heptyl-4-Quinolone Quorum Sensing Molecule as Potential Biomarker. ACS Infect. Dis., 6(12), 3237-3246, 2020.
  • M. Broto, R. McCabe, R. Galve, M.-P. Marco. A high-specificity immunoassay for the therapeutic drug monitoring of ciclophosphamide. Analyst, 144, 5172-5178, 2019.
Read More

U3-S02. Post synthesis peptide modification (On-site&Remote) OUTSTANDING

Post synthesis peptide modification (On-site&Remote) OUTSTANDING

Post-synthesis peptide modification such as:
– Cyclization through a disulphide bridge, amide, ester, thiosester, thioether, or various staple bonds.
– Biotinylation and/or incorporation of various imaging probes at the N-terminus, C-terminus or on some amino acid side chains (Lys, Cys…).
– Convenient peptide derivatisation for further conjugation by introducing a maleimide, succinimidyl, alkyne or azide-containing spacers.
– Peptide conjugation to polymers, proteins, probes and small molecules.
Multivalent peptide presentation molecules.

Customer benefits

  • Extensive experience in the synthesis of cyclic peptides (disulfide bridge, lactam, lactone, thioester, thioether).
  • Extensive experience in the synthesis of stapled peptides
  • Development of several peptide cyclization methods.
  • Extensive experience in the derivatisation of peptides for conjugation and attachment to various types of molecules (nanoparticles, polymers, imaging probes, small molecules).
  • Development of various strategies for the introduction of post-synthesis modifications.
  • Development of conjugation methodology.
  • Development of methodology for the generation of multivalent peptide presentation molecules.

Target customer

  • Research groups (drug delivery, molecular biology, pharmacology, nanotechnology, biotechnology)
  • Companies (biotech and pharma companies).

References

  • Direct Quantitative Immunochemical Analysis of Autoinducer Peptide IV for Diagnosing and Stratifying Staphylococcus aureus Infections. Montagut, Enrique-J.; Acosta, Gerardo; Albericio, Fernando; Royo, Miriam; Godoy-Tena, Gerard; Lacoma, Alicia ; Prat, Cristina ; Salvador, Juan-Pablo; Marco, Maria-Pilar. ACS Infectious Diseases (2022), 8, 645-656.
  • Hierarchical Quatsome-RGD Nanoarchitectonic Surfaces for Enhanced Integrin-Mediated Cell Adhesion. Martinez-Miguel, Marc; Castellote-Borrell, Miquel; Kober, Mariana; Kyvik, Adriana R. ; Tomsen-Melero, Judit ; Vargas-Nadal, Guillem; Munoz, Jose; Pulido, Daniel ; Cristobal-Lecina, Edgar; Passemard, Solene; oyo, Miriam ; Mas-Torrent, Marta ; Veciana, Jaume ; Giannotti, Marina I. ; Guasch, Judith ; Ventosa, Nora ; Ratera, Imma. ACS Applied Materials & Interfaces (2022), 14, 48179-48193.
  • Engineering a Nanostructured Nucleolin-Binding Peptide for Intracellular Drug Delivery in Triple-Negative Breast Cancer Stem Cells. Pesarrodona, Mireia; Sanchez-Garcia, Laura; Seras-Franzoso, Joaquin; Sanchez-Chardi, Alejandro; Balta-Foix, Ricardo; Camara-Sanchez, Patricia; Gener, Petra; Jara, Jose Juan; Pulido, Daniel ; Serna, Naroa; Schwartz, Simo; Royo, Miriam ; Villaverde, Antonio; Abasolo, Ibane ; Vazquez, Esther. ACS Applied Materials & Interfaces (2020), 12, 5381-5388.
  • Synthesis of Stable Cholesteryl-Polyethylene Glycol-Peptide Conjugates with Non-Disperse Polyethylene Glycol Lengths. Cristobal-Lecina, Edgar; Pulido, Daniel; Martin-Malpartida, Pau; Macias, Maria J.; Albericio, Fernando; Royo, Miriam. ACS Omega (2020), 5, 5508-5519.
  • Highly Versatile Polyelectrolyte Complexes for Improving the Enzyme Replacement Therapy of Lysosomal Storage Disorders. Giannotti, Marina I.; Abasolo, Ibane; Oliva, Mireia; Andrade, Fernanda; Garcia-Aranda, Natalia; Melgarejo, Marta; Pulido, Daniel; Corchero, Jose L.; Fernandez, Yolanda; Villaverde, Antonio; Royo, Miriam; Garcia-Parajo, Maria F.; Sanz, Fausto; Schwartz, Simo. ACS Applied Materials & Interfaces (2016), 8(39), 25741-25752.
  • Gated mesoporous silica nanoparticles using a double-role circular peptide for the controlled and target-preferential release of doxorubicin in CXCR4-expressing lymphoma cells. de la Torre, Cristina; Casanova, Isolda; Acosta, Gerardo; Coll, Carmen; Moreno, Maria Jose; Albericio, Fernando; Aznar, Elena; Mangues, Ramon; Royo, Miriam; Sancenon, Felix; Martinez-Manez, Ramon. Advanced Functional Materials (2015), 25, 687-695.
  • Multivalent dendrimers presenting spatially controlled clusters of binding epitopes in thermoresponsive hyaluronan hydrogels. Seelbach, Ryan J.; Fransen, Peter; Peroglio, Marianna; Pulido, Daniel; Lopez-Chicon, Patricia; Duttenhoefer, Fabian ; Sauerbier, Sebastian; Freiman, Thomas; Niemeyer, Philipp; Semino, Carlos; Albericio, Fernando; Alini, Mauro; Royo, Miriam; Mata, Alvaro; Eglin, David. Acta Biomaterialia (2014), 10, 4340-4350
  • Triazene as a powerful tool for solid-phase derivatization of phenylalanine containing peptides: Zygosporamide analogues as a proof of concept. Torres-Garcia, Carolina; Pulido, Daniel; Albericio, Fernando; Royo, Miriam; Nicolas, Ernesto. Journal of Organic Chemistry (2014), 79(23), 11409-11415.

3. Peptides-System for acidolactic cleavage of the peptide resin boundby anhydrous HF
Read More

U3-S01. Synthesis of peptides and characterisation (On-site&Remote) OUTSTANDING

Synthesis of peptides and characterisation (On-site&Remote) OUTSTANDING

Peptide production on various scales from mg (scale: 10 mg, 50 mg and 100 mg) and grams.
Synthesis of peptides containing phosphorylated amino acids, acylated or methylated side chains (lysine) or non-natural amino acids.
Peptides can be delivered as synthesis crudes (without purification) and purified (≥95% by HPLC).
Peptides are characterized by HPLC and HPLC-MS

Customer benefits

  • Extensive experience on peptide synthesis.
  • Experience in difficult sequences.
  • Control quality at different synthesis points.
  • Capability to design diverse synthesis strategies and purification
  • Development of peptide synthesis methodology.

Target customer

  • Research groups (drug delivery, molecular biology, pharmacology, nanotechnology, biotechnology)
  • Companies (biotech and pharma companies).

References

  • Pharmacological activation of insulin-degrading enzyme improves insulin secretion and glucose tolerance in diet-induced obese mice. Sanz-Gonzalez, Alba; Cozar-Castellano, Irene; Broca, Christophe ; Sabatier, Julia; Acosta, Gerardo A. ; Royo, Miriam ; Hernando-Munoz, Carla; Torroba, Tomas ; Perdomo, German ; Merino, Beatriz. Diabetes, Obesity and Metabolism (2023), 25, 3268-3278.
  • Amide Formation: Choosing the Safer Carbodiimide in Combination with OxymaPure to Avoid HCN Release. Manne, Srinivasa Rao; Luna, Omar; Acosta, Gerardo A.; Royo, Miriam ; El-Faham, Ayman ; Orosz, Gyorgy; de la Torre, Beatriz G. ; Albericio, Fernando. Organic Letters (2021), 23, 6900-6904.
  • Carbosilane Dendron-Peptide Nanoconjugates as Antimicrobial Agents
  • By: Fernandez, Jael; Acosta, Gerardo; Pulido, Daniel; Maly, Marek; Copa-Patino, Jose L.; Soliveri, Juan; Royo, Miriam; Gomez, Rafael; Albericio, Fernando; Ortega, Paula; de la Mata, F. Javier. Molecular Pharmaceutics (2019), 16, 2661-2674.
  • Optimized Stepwise Synthesis of the API Liraglutide Using BAL Resin and Pseudoprolines. Carbajo, Daniel; El-Faham, Ayman; Royo, Miriam; Albericio, Fernando. ACS Omega (2019), 4, 8674-8680
Read More

U2-S01. Scientific and technical support

Scientific and technical support

The scientific and technical support service provides valuable assistance to researchers and organizations in various aspects:

  • Immunogen Design: Expert advice on designing effective immunogens for antibody production.
  • ­Immunoreagent Synthesis and Production: Guidance on synthesizing and producing immunoreagents, including monoclonal and polyclonal antibodies.
  • Antibody Production: Support for generating high-quality antibodies for research purposes.
  • Immunoassay Design and Development: Customized development of immunoassays, including assay format design, sample matrix considerations, and sensitivity optimization.

The technical support provided is focused on identifying suitable immunogens for antibody production with desired characteristics for the user, while in the antibody production section, support is oriented towards designing screening methods during monoclonal antibody development to search for hybridomas with the desired specificity and sensitivity characteristics for each user.

Customer benefits

  • Scientific Expertise: Access to specialized knowledge in immunology and immunochemistry.
  • Technical Guidance: Assistance in experimental design, troubleshooting and optimization.
  • Cost-Effective Solutions: Avoiding the need to establish in-house facilities for antibody production and immunoassay development.
  • Accelerated Research: Faster progress due to expert support and streamlined processes.
  • ISO 9001 Certification: The development and production of monoclonal antibodies is backed by the ISO 9001:2015 certification, ensuring quality, reliability and adherence to international standards.

Target customer

Scientific and Technical Support Serviceis essential for organizations involved in Research and Development (R&D) across fields such as food safety and environmental control,  biomedicine, diagnostics, drug discovery, and therapeutic development.

Additional information

Selected references:

  • B. Rodriguez-Urretavizcaya, N. Pascual, C. Pastells, M. T. Martin-Gomez, Ll. Vilaplana, M.-P. Marco. Diagnostic and Stratification of Pseudomonas aeruginosa Infected Patients by Immunochemical Quantitative Determination of Pyocyanin from Clinical Bacterial Isolates. Frontiers in Cell. Infect. Microbiol., 11, 786929, 2021. DOI: 10.3389/fcimb.2021.786929. URL
  • Giovanna Roncador; Pablo Engel; Lorena Maestre; et al; Alison H.Banham., Nuria Pascual 2016. The European antibody network’s practical guide to finding and validating suitable antibodies for research. mAbs. Taylor & Francis Online. 8-1, pp.27-36.
  • Carme Pastells; Gerardo Acosta; Nuria Pascual; Fernando Albericio, Miriam Royo; M.-Pilar Marco. 2015. An immunochemical strategy based on peptidoglycan synthetic peptide epitopes to diagnose Staphylococcus aureus infections. Analytica Chimica Acta. Elsevier. 889, pp.203-211
Read More

U1-S05. Training courses in protein production (Biomolecules production)

Training courses in protein production (Biomolecules production)

The PPP unit provides personalised training courses in recombinant protein production and purification either at our facilities or at the client’s.
The courses can include practical training sessions, for example, in the use of FPLC-AKTA systems.

Examples of trainings are:

  • “Strategies for optimization of recombinant protein production” Advanced and Initial levels.
  • Theoretical-practical training in the management of the FPLC-AKTA system.

Applications: For users who want to use FPLC-AKTA systems. For staff of biotechonology companies. For students of Ph.D. programs.

Customer benefits

The PPP Unit specialises in designing, producing, and purifying recombinant proteins on demand, tailored to customers‘requirements. We have an extensive expertise in designing different strategies to achieve successfully final products according customers‘ needs. The service is completely personalised to ensure that the training fits the needs of the costumer. The training courses can be made collectively or individually.

Target customer

The PPP Unit extends its services across the scientific community, serving both private and public research organizations. This includes support for research centres, universities, hospitals, and companies in the sector. Leveraging our connection with the university, the PPP unit also provides specialised courses as part of the official master’s degrees and PhD programs at UAB. The training courses can be made collectively or individuality.

Read More

U1-S06. Criopreservation

Criopreservation

The PPP unit offers the oportunity to cryopreserve client samples under carefully controlled conditions using a temperature control system. This system notify us of any equipment malfunctions or temperature fluctuations that may affect the samples.

Customer benefits

For customers that don’t have equipment/space or control systems to store their samples adequately.

Target customer

The PPP Unit extends its services across the scientific community, serving both private and public research organizations. This includes support for research centres, universities, hospitals, and companies in the sector.

Read More

U1-S04. Consultancy in protein production

Consultancy in protein production

The PPP unit provides consultancy taking into acount specific issues covering cloning, recombinant protein production, and purification strategies.
The consultancy covers the entire design process for obtaining recombinant proteins according to specific needs, as well as troubleshooting solutions for achieving soluble and stable active proteins.

Examples of consultancy include:

  • Cloning: Expression vector, DNA sequence, optimization, tags, etc.
  • Protein production: expression system, optimization, etc.
  • Protein purification: general strategy, tags, buffers, etc.
  • Protein stability: storage conditions (buffer, temperature, format)

Customer benefits

The PPP Unit specialises in designing, producing, and purifying recombinant proteins on demand, tailored to customers‘ requirements. We have an extensive expertise in designing different strategies to achieve succesfuly final products acccording to customers‘ needs. The service is completely personalised to ensure that the final product matches the intended use in terms of format, purity and activity.

Target customer

The PPP Unit extends its services across the scientific community, serving both private and public research organizations. This includes support for research centres, universities, hospitals, and companies in the sector. Leveraging our connection with the university, the PPP unit also provides specialised courses as part of the official master’s degrees and PhD programs at UAB.

Read More

U1-S03. Proteins purification

Proteins purification

The PPP Unit counts with a laboratory perfectly equipped for the purification of recombinant proteins. The protein purification procedure is carried out according the protein characteristics and customers‘ needs.
Design: identification of the most appropriate strategy for protein purification, given the physical and chemical properties, opting either for purification modules or, in the case of fusion proteins, elements which enable purification by affinity.
Protein purification: downstream processing using FPLC chromatography and/or tangential filtration either from the cellular pellet or the supernatant when the protein is secreted. When necessary, the purification is performed through solubilization of inclusion bodies or by purification under denaturing conditions with later refolding.
Final product: the purified protein is delivered in the buffer, temperature and the concentration requested by the costumer. When demanded, the protein can be delivered in lyophilised form.
Quality control: the purified recombinant protein is analysed in terms of molecular weight, purity by SDS-PAGE, aggregation by DLS and identification by Peptide-Mass Fingerprinting. Additional analysis can be performed under customer’s agreement such as buffer optimization (Microdyalisis) or freeze-thaw stability.

Customer benefits

The service is completely personalised to ensure that the final product matches the intended use in terms of format, purity and activity. We have various purification methodologies to address specific needs, offering a wide range of possibilities for obtaining the final product. All services adhere to standardised procedures, guaranteeing the quality of the end product. Thus, instead of offering a generic solution, we deliver a customised product with the exact specifications requested by the customer.

Target customer

The PPP Unit extends its services across the scientific community, serving both private and public research organizations. This includes support for research centres, universities, hospitals, and companies in the sector. Leveraging our connection with the university, the PPP unit also provides specialised courses as part of the official master’s degrees and PhD programs at UAB.

Additional information

Over its 17-year history, the PPP unit has successfully completed over 400 projects and has been recognised in more than 121 scientific publications. In the past three years, it has received citations in the following works:

  • ACS Materials Lett. 2024, 6, 3, 954–962
  • Front. Immunol. 2024. 15:1346512.
  • Applied Microbiology and Biotechnology (2024) 108:98
  • ACS Sustainable Chem. Eng. 2023, 11, 4133−4144
  • Pharmaceutics 2023, 15, 2632.
  • Microbial Cell Factories (2023) 22:81
  • Biomed Pharmacother 2023. 164:114976.
  • ACS Appl. Mater. Interfaces 2023, 15, 39167−39175
  • Pharmaceutics 2023, 15, 1197
  • Sci China Mater 2023, 66(10): 4109–4120
  • Pharmaceutics 2023, 15(3), 727
  • Biomedicine & Pharmacotherapy 2023, 169(1):115848
  • Appl Environ Microbiol 2023 Jun 28;89(6)
  • Biomedicine & Pharmacotherapy 150 (2022) 112940
  • Biomaterials 280 (2022) 121258
  • Pharmaceutics 2022, 14, 887
  • J. Exp Clin Cancer Res (2022) 41:49
  • DRUG DELIVERY 2022, VOL. 29, NO. 1, 1384–1397
  • Biomedicines 2022, 10, 1680.
  • Microbial Cell Factories (2022) 21:203
  • Acta Pharmaceutica Sinica B 2022;12(5):2578e2591
  • Pharmaceutics 2022, 14, 602.
  • Pharmaceutics 2022, 14, 192.
  • Front. Bioeng. Biotechnol. 2022 10:842256.
  • Anal. Chem. 2022, 94, 5359−5366
  • Odontology (2022) 110:545–556
Read More