+34 620 10 75 37info@nanbiosis.com

Posts by Nanbiosis

NANBIOSIS U20 at the Nanomed Europe Conference, NME19.

Last week took place in Braga, Portugal, the Nanomed Europe Conference, NME19, a new and unique conference  born from the merge of the 14th annual event of the ETPN & the European scientific conference ENM (after London 2017 & Grenoble 2015), bringing together scientists, technology providers, entrepreneurs, industry and clinicians, all of them developing great medical applications of Nanotechnologies and emerging MedTech. The event is been co-organized this year by the ETPN and INL.

Simó Schwartz, Scientific Director of NANBIOSIS U20, was one of the selected speakers and gave a lecture about “Preclinical development of magnetic nanoparticles for the treatment of pancreatic cancer”

Two posters mentioning the research carried out at NANBIOSIS Unit 20 were also presented. (See the picture)

It was also a ood opportunity to explain the advances in the two H2020 projects where NANBIOSIS U20 participates (“Nocanther” and “Smart4Fabry”), and also an internal project, “Meridian”, on the use of exosomes (with own patent and financed by the FIS).

In Nocanther Project, the U20 participates providing the animal models and the imaging techniques (X-ray CT images) for the biodistribution and efficacy assays of iron oxide nanoparticles. These assays are essential for preparing the dossier for the clinical application of these nanoparticles. Indeed, patient recruitment for clinical studies on Nocanther project will start in 2020.

In Smart4Fabry, the U20 works completing the efficacy assays of different nanoGLA formulations. Again, these efficacy assays will be a necessary step before starting preclinical regulatory assays.

In the MERIAN project, U20 provides the in vivo proof-of-concept and biodistribution assays that support the use of protein loaded exosomes as a feasible product for treating lysosomal storage disorders.

Read More

Agreement signed with Spanish Goverment for the allocation of FEDER funds for NANBIOSIS ICTS

In the framework of the FEDER Program in ICTS 2014-2020, a projects related to the ICTS NANBIOSIS has been selected by the Ministry of Science, Innovation and Universities for co-financing with FEDER funds of the European Regional Development Funds program.

An agreement has been signed between Ministry of Science, Innovation and UPV/EHU (University of the Basque Country ), institution that houses NANBIOSIS unit 10 for the co-financing of the Project FICTS-1420-17: “Purchase and installation and set-up of characterization equipment to complement Unit 10 of drug formulation”.

Read More

Laparoscopic surgery in the uterus retrieval procedure during uterine transplantation

Researchers of NANBIOSIS units at JUMISC have recently published the results of an study that highlights the promising application of laparoscopy for graft procurement surgery in uterine transplantation from living donors for absolute uterine infertility treatment. Laparoscopy seems to be a safe, time saving, useful and technically feasible surgical procedure for uterus extraction, with the additional benefits of minimally invasive surgery. It was also demonstrated that after a successful uterine transplant, pregnancy can be achieved by combining laparoscopy for uterine retrieval and microsurgery for vascular anastomosis. With the increasing success rate of human uterus transplantation trials from living donors, it is very probable that laparoscopic graft extraction will soon become a reality in the transplantation field. However, uterus transplantation will remain as a clinical experimental procedure until sufficient experience is achieved.

The resarch has been executed by using the Unique Scientific and Technical Infrastructure (ICTS) “NANBIOSIS.”

Article of reference:

Francisco Miguel Sánchez-Margallo,  Belén Moreno-Naranjo, María del Mar Pérez-López, Elena Abellán, José Antonio Domínguez-Arroyo, José Mijares &  Ignacio Santiago Álvarez. Laparoscopic uterine graft procurement and surgical autotransplantation in ovine model Scientific Reports 9, Article number: 8095 (2019) 

Read More

New Antimicrobial surfaces with self-cleaning properties and NANBIOSIS Unit 17

In the last decades, increased resistance to conventional antibiotics has led to important research in the development of alternative strategies for preventing pathogen dissemination. Antimicrobial surfaces containing a biocidal agent inhibit or reduce microorganisms growth capacity on the surface of materials. In addition to this microbial proliferation inhibition, antimicrobial coatings may also confer additional properties.

Researchers from the University of Alcalá and the CSIC Institute of Catalysis and Petrochemistry, have carried out a research about the self-cleaning properties of antimicrobial surfaces functionalized by photocatalytic ZnO electrosprayed coatings.

The authors prepared electrosprayed photoactive coatings of sol-gel ZnO nanoparticles tested as dual action self-cleaning antimicrobial surfaces. The materials showed excellent photocatalytic and photodisinfection properties due to the release of bioavailable zinc and photogenerated oxidative species. The surfaces were free from bacterial colonization and biofilm formation.

Confocal microscopy of NANBIOSIS U17 was used to reveal biofilm matrix using FilmTracer SYPRO Ruby stain and to assess cell viability by means of Live/Dead BacLight Bacterial Viability Kit.

Article of reference:

Laura Valenzuela, Ana Iglesias, Marisol Faraldos, Ana Bahamonde, Roberto Rosal, Antimicrobial surfaces with self-cleaning properties functionalized by photocatalytic ZnO electrosprayed coatings, Journal of Hazardous Materials, Volume 369, 2019, Pages 665-673, https://doi.org/10.1016/j.jhazmat.2019.02.073.

Read More

NANBIOSIS U27 propose a mew method for assessing nonlinear cardiorespiratory interactions

Researches of NANBIOSIS Unit 27 High Performance Computing, S. Kontaxis, J. Lázaro, E. Gil, P. Laguna, and R. Bailón are the authors of an article recently published by IEEE Transactions Biomedical Engineering

Alternations of cardiorespiratory interactions are related to Autonomic Nervous System (ANS) dysfunction and physiological regulation of the Heart Rate Variability (HRV) in cardiovascular diseases. In this study, a method for assessing nonlinear cardiorespiratory interactions is proposed, quantifying the Quadratic Phase Coupling (QPC) between respiration and HRV. Quadratic cardiorespiratory couplings are studied during a tilt table test protocol on young healthy subjects. Results show a significant reduction of QPC between respiration and HRV during head-up tilt position compared to early supine suggesting that the proposed technique is able to track nonlinear cardiorespiratory couplings during ANS changes.

Article of reference:

S. Kontaxis, J. Lázaro, E. Gil, P. Laguna, R. Bailón (2019)Assessment of Quadratic Nonlinear Cardiorespiratory Couplings During Tilt Table Test by Means of Real Wavelet Biphase, IEEE Transactions Biomedical Engineering. vol. 66, n. 1, pp. 187-198 doi: 10.1109/TBME.2018.2821182

Read More

NANBIOSIS unit 13 participation at the VIII Conference of Young Researchers of I3A-UZ

Next Thurstday, June 6th, the “Aragón Engineering Research Institute” (I3A) of University of Zaragoza will hold the “VIII Conference of Young Researchers” at the Conference Room Building. R & D (block 1, 1st floor)

Researchers of NANBIOSIS unit U13 Tissue & Scaffold Characterization Unit will present their works

In the oral presentations section, Mohamed H. Doweidar will talk about Cell behavior under hypoxic conditions. Computational 3D model.

In the posters section in the area of ​​BIOMEDICAL ENGINEERING the researchers of unit 13 will present the following results.

Design of a microfluidics system for the simulation of the formation of atheromatous plaque. Itziar Ríos Ruiz, Sara Oliván García, Miguel Ángel Martínez Barca, Estefania Peña Baquedano.

Mechanobiological modeling of the formation of atheromatous plaque in the carotid artery of a specific patient. Patricia Hernández López, Myriam Cilla Hernández, Miguel Ángel Martínez Barca, Estefania Peña Baquedano.

Read More

Mechanism of interaction of a material (pharmaceutical, food, construction, chemical, etc.) with moisture or with any organic vapor.

Next June 11, 2019, from 09:30h to 17:00h, will take place in Eureka Building – Parc de Recerca, UAB (Barcelona), a Scientific-Theoretical / Practical Workshop on: DYNAMIC SORPTION OF VAPORS (DVS – DYNAMIC VAPOR SORPTION) AND CHARACTERIZATION OF MATERIALS (iGC / SEA – INVERSE GAS CHROMATOGRAPHY / SURFACE ENERGY ANALYZER) FOR THE ANALYSIS OF THE SORTION OF WATER AND ORGANIC VAPORS, AND CHARACTERIZATION OF MATERIALS AND SURFACES.

The event is organized by IESMAT, S.A. in collaboration with Nanomol Technologies SL, the Institute of Materials Science of Barcelona (ICMAB-CSIC), Surface Measurement Systems (SMS) and the Center for Biomedical Research in Network (CIBER)/NANBIOSIS, includes theoretical presentation DVS (Dynamic Vapor Sorption) technologies and iGC-SEA (Inverse Gas Chromatography – Surface Energy Analyzer).

This workshop, addressed to researchers and/or technicians interested in knowing the mechanism of interaction of a material (pharmaceutical, food, construction, chemical, etc.) with moisture or with any organic vapor, and DVS users, includes: Presentation of equipment and instrumentation of Surface Measurement Systems (SMS) distributed by Specific Instrumentation of Materials (IESMAT). Presentation of users of dynamic vapor sorption equipment. Demonstration of hardware and software of the DVS Intrinsic equipment.

FREE REGISTRATION– until full capacity is reached. To formalize it, contact Ms. Estefanía Écija (estefania.ecija@iesmat.com; 91 650 8005), before June 6th, indicating name, company, telephone and e-mail.

Read More

Quantification of Ventricular Repolarization Variation for Sudden Cardiac Death Risk Stratification in Atrial Fibrillation

ATRIAL fibrillation (AF) is the most prevalent sustained arrhythmia and it has become one of the most important public health issues in developed countries. It is expected to double its incidence by 2030 [1], [2], representing the major cause of hospitalizations in elderlies (≥65 years), together with chronic heart failure


Alba Martín-Yebra and Juan Pablo Martínez, scientists of NANBIOSIS U27 High Performance Computing, have led the research that proves that it is possible to stratity AF patients at risk of sudden cardiac death (SCD) what could help cardologists to implement better solutions.

The computation was performed by the ICTS NANBIOSIS, specifically by the High Performance Computing Unit of the CIBER-BBN at the I3A-University of Zaragoza.  

Atrial fibrillation (AF) rhythm is characterized by an irregular ventricular response, preventing the use of standard ECG-derived risk markers based on ventricular repolarization heterogeneity under this particular condition. In this study, the authors proposed new indices able to quantify repolarization variations in AF patients assessing their stratification performance in a chronic heart failure population with AF. Results showed that patients with enhanced ventricular repolarization variation computed in terms of the proposed indices were successfully associated to a higher sudden cardiac death incidence in our study population. In addition, risk assessment based on the combination of the proposed indices improved stratification performance compared to their individual potential. In conclusion, the study proves that using a simple ambulatory ECG recording, it is possible to stratify AF patients at risk of SCD, which may help cardiologists in adopting most effective therapeutic strategies, with a positive impact in both the patient and healthcare systems

Article of reference:

A. Martín-Yebra, P. Laguna, I. Cygankiewicz, A. Bayés-de-Luna, E. G.
Caiani, J. P. Martínez Quantification of Ventricular Repolarization Variation for Sudden Cardiac Death Risk Stratification in Atrial Fibrillation. IEEE J Biomed Health Inform,  v.. 23, n. 3, pp 1049-
doi: 1057.10 1109/JBHI.2018.2851299

Read More

Preclinical molecular imaging and its application to biomedical research

During the days 22-24 of May is taking place in Madrid the 3rd Workshop of introduction to the preclinical molecular image and its application to biomedical research,. The wokshop has been organized by the Health Research Institute of the Gregorio Marañón Hospital, the Complutense University of Madrid and the Madrilenian Network of nanomedicine in molecular imaging (RENIM-CM).

The program counts with theoretical sessions of introduction to the physical foundations of each one of the modalities of image and its applications to preclinical biomedical research, as well as practical demonstrations of said image techniques.

Ibane Abásolo, Scientific Coordinator of Unit 20 of NANBIOSIS In Vivo Experimental Platform, introduced the in vivo optical imaging applications, explaining the research carried out at her research group at Vall d’Ebron Hospital Research Institute (VHIR) and NANBIOSIS U20 created by CIBER-BBN and VHIR, applied to projects as the H2020 Smart4Fabry and NoCanTher

NANBIOSIS U20 In vivo Experimental Platform has three different sections, a Molecular Imaging section for in vivoex vivo and in vitro imaging studies (fluorescence, bioluminescence and X-rays), a preclinical animal model section and a preclinical histology section.

Read More

An Eskimo in the desert

An Eskimo in the desert is the title of the talk that Ignacio Ochoa Researcher of NANBIOSIS U13 Tissue & Scaffold Characterization Unit is giving today at the Pint of Science Festival in Zaragoza at 19:00.

One of the greatest advances in biomedicine was to achieve, at the end of the 19th century, maintain human cells outside the body in order to study them. This breakthrough has allowed us, for example, to discover new drugs and evaluate the toxicity of many compounds. Unfortunately, this progress has hardly evolved over these 125 years. However, the arrival of microfluidic technology has allowed us to simulate much better what actually happens in our body. This new advance will revolutionize biomedicine, bringing it closer to the goal of personalized medicine

As Iñaki has explained to NANBIOSIS “Cells are accustomed to being in a specific environment in our body (mechanical, chemical, electrical, etc.) and, when we take them out of that environment to study them in the laboratories they stop working in a similar way as they did in vivo. This change of functioning sometimes generates false positives in the study of efficacy of new drugs and generates delays and excessive costs in the development of new treatments. Thanks to the Organ on Chip technology, we can better simulate in the laboratory the environment of the cells under physiopathological conditions (rigidities, gradients, flow or the presence of different cell types) and obtain results closer to the clinic”.

Read More