+34 620 10 75 37info@nanbiosis.com

Posts by Nanbiosis

Biomarkers in semen to diagnose prostate cancer

Sara Larriba of the Human Molecular Genetics Group of Bellvitge Biomedical Research Institute (IDIBELL) has informed NANBIOSIS about a recent publication mentioning NANBIOSIS in the Acknowledgements for its participation in the results of their research. (The nanoparticle tracking analysis was performed by the ICTS NANBIOSIS U6 Biomaterial Processing and Nanostructuring Unit) The article has been published by the journal Scientific Reports of Nature Research.

The prediction of PCa in the early stage of the disease is one of the most important objectives in male urology. A significant decrease in deaths due to PCa has been associated with the use of serum PSA test recent years. However, the PSA test still has serious limitations and often gives false positives that lead to many unnecessary biopsies of benign disease. Therefore, researchers from the Human Molecular Genetics Group of Bellvitge Biomedical Research Institute (IDIBELL) decided to evaluate semen as a source of prostate cancer biomarkers, and studying extracellular miRNAs, which are present within semen in extraordinary concentrations since some of the Some of these extracellular miRNAs are specific to the prostate gland and, in addition, there is already research showing that extracellular miRNAs can reflect altered patterns of miRNA expression in prostate tumor tissue. The study conducted allowed scientists to discover a distinctive miRNA expression pattern in exosomal semen samples obtained from men with prostate cancer compared with that found in exosomal semen samples taken from healthy men. The next step would be to conduct more prospective studies in larger patient cohorts before this miRNA-based biomarker can be adopted in daily clinical practice.

Article of reference:

Semen miRNAs Contained in Exosomes as Non-Invasive Biomarkers for Prostate Cancer Diagnosis, Maria Barceló, Manel Castells, Lluís Bassas, Francesc Vigués2 & Sara Larriba. Scientific Reports volume 9, 24 Sept 2019.

Read More

Nanbiosis and CIBER-BBN present at BioNanoNet and Austrian Microfluidics Initiative (AMI)

Nanbiosis-ICTS and CIBER-BBN were present at BioNanoNet Annual Forum & Networking event and the Austrian Microfluidics Initiative (AMI) workshop “Biomedicine on Chip” that took place on 10-11th of September 2019 at the premises of the University of Salzburg attracting about 40 participants from both science and industry.

For furher information: https://www.bionanonet.at/;   www.microfluidicsaustria.at

Read More

Preclinical brain tumour therapy response assessment with MRSI approaches: Oral presentation awarded to Ana Paula Candiota


NANBIOSIS U25 scientific coordinator, Ana Paula Candiota, has recently presented a scientific work about preclinical brain tumour therapy response assessment with MRSI approaches in the 36th annual meeting of ESMRMB held in Rotterdam, Netherlands, October 3-5. Work was entitled  “Oscillatory pattern of response in MRSI-based Glioblastoma therapy follow-up: an immune system biomarker?” and was awarded an oral presentation in the scientific session of Animal Models: Brain & others

Article of refrence:
L. Villamañan, P. Calero, S. Wu, N. Arias-Ramos, M. Pumarola, S. Ortega-Martorell, M. Julià-Sapé, C. Arús, A.P. Candiota. Oscillatory pattern of response in MRSI-based Glioblastoma therapy follow-up: an immune system biomarker? European Society for Magnetic Resonance in Medicine and Biology (ESMRMB) 2019. Rotterdam, NL. Oct 2019.

Read More

Not always what closes best opens better: mesoporous nanoparticles capped with organic gates

Researchers of NANBIOSIS Unit 26 NMR: Biomedical Applications II have recently published an article in the scientific journal Science and Technology of Advanced Materials,

Four types of calcined MCM-41 silica nanoparticles, loaded with dyes and capped with different gating ensembles are prepared and characterized. N1 and N2 nanoparticles are loaded with rhodamine 6G and capped with bulky poly(ethylene glycol) derivatives bearing ester groups (1 and 2). N3-N4 nanoparticles are loaded with sulforhodamine B and capped with self-immolative derivatives bearing ester moieties. In the absence of esterase enzyme negligible cargo release from N1, N3 and N4 nanoparticles is observed whereas a remarkable release for N2 is obtained most likely due to the formation of an irregular coating on the outer surface of the nanoparticles. In contrast, a marked delivery is found in N1, N3, and N4 in the presence of esterase enzyme. The delivery rate is related to the hydrophilic/hydrophobic character of the coating shell. The use of hydrophilic poly(ethylene glycol) derivatives as gating ensembles on N1 and N2 enables an easy access of esterase to the ester moieties with subsequent fast cargo release. On the other hand, the presence of a hydrophobic monolayer on N3 and N4 partially hinders esterase enzyme access to the ester groups and the rate of cargo release was decreased.

Aricle of reference:

Elena Añón, Ana M. Costero, Pablo Gaviña, Margarita Parra, Jamal El Haskouri, Pedro Amorós, Ramón Martínez-Máñez & Félix Sancenón (2019) Not always what closes best opens better: mesoporous nanoparticles capped with organic gates, Science and Technology of Advanced Materials, 20:1, 699-709, DOI: 10.1080/14686996.2019.1627173

Read More

Biomedicine Project Manager job vacancy

CIBER-BBN is looking for proyect manager for a european project in biomedicine to coordinate NANBIOSIS units participation in the project.

The position requires good command of English and strong skills in coordinating researchers.

Applications must be filed at CIBER’s web portal untill October 15.

Read More

CIBER-BBN Annual Conference 2019

In one month CIBER-BBN will celebrate its 13th Annual Conference on October 20 and 21 in Tarragona, at the Hotel Ciutat de Tarragona, Tarragona.

This year there several scientific sessions are planned about related leading issues with research topics of interest to CIBER-BBN. On Monday there will be three sessions centered in:

  • artificial intelligence and big data
  • gene editing and CRISPR and
  • liquid biopsy and point-ofcare.

Each of these sessions will include a plenary conference given by an expert
guest and two talks by BBN researchers, followed by an open debate.

The program will complete a session focused on the Singular Technical Scientific Infrastructure NANBIOSIS-ICTS.

On Tuesday, the four prizes will be awarded to the best scientific articles published by young researchers of CIBER-BBN during 2018 and there will be two other sessions on

  • nanobots and emerging drug administration technologies and
  • senescence and reprogramming

Read More

NANBIOSIS Unit 10 expands its equipments and capabilities

NANBIOSIS U10 Drug Formulation unit, led by Dr. José Luis Pedraz, has recently added new equipment as a result of its participation in the project FICTS1420-20, selected by the MINECO for co-financing by the FEDER Program in ICTS 2014-2020.

The new equipment includes:

  • Malvern Spraytec: It’s a laser diffraction system allows measurement of spray particle and spray droplet size distributions, in real time, for more efficient product development of sprays and aerosols.

European Regional Development Fund
Read More

Targeting antitumoral proteins to breast cancer by local administration of functional inclusion bodies

Three units of NANBIOSIS have collaborated in obtaining the research results published in the article “Targeting Antitumoral Proteins to Breast Cancer by Local Administration of Functional Inclusion Bodies” published by Advanced Science

Protein production and DLS have been partially performed by the Unit 1 of ICTS NANBIOSIS Protein Production Platform (PPP) and the Unit 6 NANBIOBIS Biomaterial Processing and Nanostructuring Unit. Biodistribution and immunohistochemistry assays were performed at NANBIOSIS U20 In Vivo Experimental Platform/FVPR

Two structurally and functionally unrelated proteins, namely Omomyc and p31, are engineered as CD44‐targeted inclusion bodies produced in recombinant bacteria. In this unusual particulate form, both types of protein materials selectively penetrate and kill CD44+ tumor cells in culture, and upon local administration, promote destruction of tumoral tissue in orthotropic mouse models of human breast cancer. These findings support the concept of bacterial inclusion bodies as versatile protein materials suitable for application in chronic diseases that, like cancer, can benefit from a local slow release of therapeutic proteins.

Read More

NANO TECHNOLOGIES AND MICROENCAPSULATION course

Next October 15-18, the researchers of NANBIOSIS U12, Nanostructured liquid characterization unit, are giving a course on Nano Technologies and Microencapsulation organized by CSIC General Foundation and CUIMPB – Center Ernest Lluch of the Menéndez Pelayo International University (UIMP) in Barcelona.

The nano- and microencapsulation consists in the protection of active substances inside nano- and microcarriers, particularly labile molecules, improving their stability, with the aim of transporting them and achieving their controlled release. This topic is the subject of great interest in numerous fields and industrial applications. It is known that the performance efficiency of an active substance greatly increases with its encapsulation, depending on the size of the capsules, their transfer surface and the permeability properties of said capsules. In addition, the capsules can be directed specifically inside an organism, using suitable vectors.
The object of the course is to provide attendees with the basics of micro- and nanoencapsulation techniques, including fundamentals and preparation methods, as well as innovative applications in the chemical, cosmetic and pharmaceutical fields, among others.

The registration form and detailed information can be found on the CUIMPB website

Read More

AKT2 as a promising target for future anti-cancer therapies

The researchers of NANBIOSIS U20, led by Ibane Abásolo and Simó Schwartz have published a new article on the scientific magazine Cancerswith the title Pivotal Role of AKT2 during Dynamic Phenotypic Change of Breast Cancer Stem Cells

All the in vivo studies were performed by NANBIOSIS U20 In Vivo Experimental Platform.

Therapeutic resistance seen in aggressive forms of breast cancer remains challenging for current treatments. More than half of the patients suffer from a disease relapse, most of them with distant metastases. Cancer maintenance, resistance to therapy, and metastatic disease seem to be sustained by the presence of cancer stem cells (CSC) within a tumor. The difficulty in targeting this subpopulation derives from their dynamic interconversion process, where CSC can differentiate to non-CSC, which in turn de-differentiate into cells with CSC properties. Using fluorescent CSC models driven by the expression of ALDH1A 1(aldehyde dehydrogenase 1A1), we confirmed this dynamic phenotypic change in MDA-MB-231 breast cancer cells and to identify Serine/Threonine Kinase 2 (AKT2) as an important player in the process. To confirm the central role of AKT2, we silenced AKT2 expression via small interfering RNA and using a chemical inhibitor (CCT128930), in both CSC and non-CSC from different cancer cell lines. Our results revealed that AKT2 inhibition effectively prevents non-CSC reversion through mesenchymal to epithelial transition, reducing invasion and colony formation ability of both, non-CSC and CSC. Further, AKT2 inhibition reduced CSC survival in low attachment conditions. Interestingly, in orthotopic tumor mouse models, high expression levels of AKT2 were detected in circulating tumor cells (CTC). These findings suggest AKT2 as a promising target for future anti-cancer therapies at three important levels: (i) Epithelial-to-mesenchymal transition (EMT) reversion and maintenance of CSC subpopulation in primary tumors, (ii) reduction of CTC and the likelihood of metastatic spread, and (iii) prevention of tumor recurrence through inhibition of CSC tumorigenic and metastatic potentia

Read More