+34 620 10 75 37info@nanbiosis.com

Posts by Nanbiosis

U16-S06. Topographical characterisation service using optical profilometry

Topographical characterisation service using optical profilometry

This service makes use of a non-invasive optical method to determine the 3D texture of surfaces using spatial, volumetric and height parameters, from the millimetre to the nanometre range. Confocal profilometry can be used to obtain a complete surface characterisation with roughness parameters, as well as a dimensional characterisation of living microorganisms and their structures. In addition, this service has a high-resolution technique for the characterisation of surfaces with roughness in the nanometre range, such as interferometry, and a fast technique for surfaces with roughness of hundreds of microns, such as focus variation.

Customer benefits

The service will be provided by specialists in characterisation of materials in macroscopic dimensions and in living micro-organisms.
The service works in accordance with ISO, ASTM, ASME and EUR standards. In addition, it can also provide detailed reports according to the needs of the study.

Target customer

The service can meet the needs of companies by providing support for their ISO, ASTM, ASME and EUR controls. In addition, it can also service research groups with detailed reports according to the needs of the study.

Additional information

Read More

U16-S05. Contact angle goniometry characterisation service

Contact angle goniometry characterisation service

This service permits the determination of the surface tension of both solids and liquids under controlled conditions of temperature and humidity, including locally by means of deposited droplets of a volume of the order of 10-12 pL. The service offers the possibility to perform static, advancing and receding contact angle measurements between different liquids and a solid surface. Surface tension and liquid-liquid interfacial tension measurements can also be carried out using the pendant drop method. All these measurements can be carried out in a humidity and temperature controlled environment.

Customer benefits

The service will be provided by specialists in characterisation of materials in macroscopic dimensions or in colloidal systems.
The service works in accordance with ISO, ASTM, ASME and EUR standards. In addition, it can also provide detailed reports according to the needs of the study.

Target customer

The service can meet the needs of companies by providing support for their ISO, ASTM, ASME and EUR controls. In addition, it can also service research groups with detailed reports according to the needs of the study.

Additional information

Read More

1st Forum of CIBER-BBN/NANBIOSIS and CSIC Nanomed Conection researchers

The Nanomed Conection of the Spanish Research Council (CSIC) and the Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), together with its singular infrastructure NANBIOSIS, have organised a Forum on Nanomedicine Research during the days 30 of June and 1st of July to be held at the Institute of Advanced Chemistry of Catalonia (IQAC-CSIC) in Barcelona. The event will be also transmitted on-line previous registration.

This is the first meeting gathering together scientists from CIBER-BBN and its ICTS NANBIOSIS and from the CSIC’ Nanomed Conection with a shared interest in Nanomedicine.

This two days meeting will allow researchers to present their works in progress, share their scientific concerns and needs and discuss the impact of nanomedicine in the emerging fields of drug delivery, diagnosis and therapy.

The programe, available in the web of the forum includes these sessions:

  • Nanobiotechnological solutions for diagnosis and therapy
  • Drug delivery nanosystems
  • Applications for oncology (I and II)
  • Nanomedicine & other frontier applications

Attendance to the Forum (in person / or online) is free prior registration in the web of the forum (following this link):

Registration will remain open until June 26.
We hope to see you there!

Read More

NANBIOSIS in the new poster of ICTS map published by Spanish Goverment.

ICTS underpins the Spanish reputation for research excellence.

In the picture: the new poster of the ICTS map in which NANBIOSIS facilities have been highlighed

The term Unique Scientific and Technical Infrastructure (ICTS) refers to facilities, resources, or services for the development of top-quality cutting-edge research, as well as the communication, exchange, and preservation of knowledge, the transfer of technology, and promotion of innovation. They are unique or exceptional in their fields, with a high cost of investment, maintenance, and operation, and are of a strategic importance that justifies their availability to all actors in the field of R&D&I. The ICTS share three fundamental characteristics; they are infrastructures with public ownership, unique and open to competitive access.

ICTS offer an opening capacity percentage of their essential services under ‘Competitive Open Access’ for the use by national and international public and private sector researchers, with the support of technical and administrative personnel of the ICTS. Infrastructures access is ruled by a public “Access Protocol” that describes the procedure and criteria for access to the infrastructure. The main features of ‘Competitive Open Access’ are that R + D + i quality of activities developed at the infrastructure should be proven and that requests for access should be prioritized on the basis of objective criteria.

The dissemination of ICTS and their capabilities is essential to provide Spanish and international researchers with access to a large base of quality services and facilities, a basic requirement for the development of excellent science.

The new posster pushised by the General Subdirectorate of Large
Scientific-Technical Facilities of the of the Sapanish Ministry of Science and Research Innovation helps to disseminate and understand the map of ICTS wich are located throughout the country

NANBIOSIS, is one of the five ICTS in the field of Health Sciences and Biotecnology

Read More

U13-E04. Micro-scale tension-compression test system CellScale.

Test system for small samples including:

  • Main equipment (Micro-scale tension-compression test system)
  • Tangential test module (Shear Axis add-on for MicroTester system)

Description: Enhanced for smaller samples, the MicroTester offers improved force resolution, streamlined test setups, and exceptional visual feedback. It’s ideal for a wide range of applications, from tiny tissue samples to hydrogel microspheres, cell spheroids, and engineered microtissues.

Technical specifications: Piezo-electric actuators with 0.1µm resolution Optional second axis imaging Force resolution down to 10nN High resolution CCD imaging Integrated temperature-controlled media bath Fully featured user interface software for simple, cyclic, relaxation, and multi-modal testing with real-time feedback

Aplications: Compression, tension, bending, indentation and shear testing

Read More

U13-S09. Compression-shear test cellscale MicroTester G2

Compression-shear test cellscale MicroTester G2

Compression and shear test applied to a wide range of biomaterial and soft tissues. Force is measured using the difference between the tip and base displacement and the stiffness of the beam that connects them.
Mechanical and viscoelastic properties can be measured.

Customer benefits

  • Adaptable system to the material stiffness properties.
  • Well define testing protocols.
  • Tests are recorded in high definition.

Target customer

Public and private research groups focused on biomaterials and tissue mechanical characterization.

References

Nicolás Laita, Ricardo M. Rosales, Ming Wu, Piet Claus, Stefan Janssens, Miguel Ángel Martínez, Manuel Doblaré, Estefanía Peña, On modeling the in vivo ventricular passive mechanical behavior from in vitro experimental properties in porcine hearts, Computers & Structures, 292, 2024, 107241, ISSN 0045-7949, Doi: 10.1016/j.compstruc.2023.107241.

Additional information

Used in BravE project (https://projectbrave.eu/)

Read More

How to accomplish researchers’ goals with Confocal Microscopy: the tools, the know-how and the expertise you need

NANBIOSIS Unit 17 (Confocal Microscopy) is a CIBER-BBN unit located in the Cell Culture Unit, CAI Medicine and Biology, Faculty of Medicine at the University of Alcala. This unit of the ICTS NANBIOSIS supports researchers interested on their different studies visualizing diverse samples as tissues, cells, bacterial biofilms, etc. This unit owns the tools, the know-how and the expertise to accomplish researchers’ goals either by transmission or reflection fluorescent.

We are happy of sharing this video in which researchers of Unit 17 show all the steps required for the visualization of the PV-1 molecule, also known as PLVAP, on the gut-endothelium of cirrhotic rats. We look at the whole process, starting by the sample selection following their preparation until its visualization by the confocal fluorescent microscopy, ending up with the analyze process.

Read More

“The almighty graphene”, a podcast by Elisabet Prats

Elisabet Prats Alfonso, a researcher in the team coordinating NANBIOSIS U8 Micro– Nano Technology Unit explains in a podcast her most recent research based on the functionalization of chemical and biochemical sensor platforms as well as the characterization of materials such as graphene for both neuronal recording and biomarker detection. Her work is part of the Graphene Flagship project in which she collaborates with relevant European groups.

Eli Prat as a researcher Ph.D. in Chemistry and also dedicated to dissemination is a great exemple for the NANBIOSIS aim to encourage STEAM scientific vocations especially among girls.

In addition, she is the author, together with Helena González and Oriol Marimón, of the book Elementum and the great robbery of Nurú” (La Esfera de los Libros, 2020), a scientific novel aimed at children .

Read More

Nora Ventosa appointed Research Professor under the Materials Science

Nora Ventosa, the Scientific Director of NANBIOSIS U6 of Biomaterial Processing and Nanostructuring Unit (and IP of the NANOMOL Group of CIBERBBN at ICMAB-CSIC) has been appointed Research Professor in the last call of the Spanish National Reserach Council (CSIC)

This elective process for the selection and appointment of career civil servant, by internal promotion, in the Scale of Research Professors of Public Research Organisms had oppen 6 new positions for Professors under the Materials Science.

Nora Ventosa is a Chemical Engineer by the Institut Químic de Sarrià (IQS) and Doctor in Chemistry by the Universitat Ramon Llull. Her research is focused on green chemistry, soft materials and nanobiochemistry. She is devoted to develop and apply new methodologies, based on compressed fluids, in order to gain control of molecular self-assembly in solution.

Prof. Ventosa is also co-founder of the spin-off Nanomol Technologies, vicepresident of the Societat Catalana de Química (SCQ-IEC), member of the Administration Council of ACCIÓ, the Catalan Government agency for the promotion of the competitiveness within companies, and President of the TECNIO Research Association. She has participated, organized and directed more than 50 research projects, funded by different national and international agencies, public, private and industrial, including the European projects Smart4Fabry (Smart multifunctional GLA-nanoformulation for Fabry disease) or Phoenix (Open Innovation Test Bed for Enabling Pharmaceutical Innovative Products).

U6: Biomaterials processing and Nanostructuring unit

 Unit 6 of NANBIOSIS, on Biomaterials processing and Nanostructuring unit from CIBER-BBN, hosted at ICMAB-CSIC, with Scientific Director Nora Ventosa, from the Nanomol-Bio research group. The U6 gathers several laboratories, perfectly equipped, to perform the mission of this facility: the development, characterization, and large-scale production of molecular biomaterials of therapeutic or biomedical interest, with controlled micro-, nano- and supramolecular structure. One example of Key-Enabling-Technology (KET) available in this unit in collaboration with the SME Nanomol Technologies (spin off of CSIC) is a simple and green one-step methodology, DELOS, based on the use of compressed fluids (CF), such as CO2, to prepare particulate materials with precise and reproducible structural characteristics at micro-, nano- and supramolecular levels (size, shape, internal structural gradients, supra­molecular organization and crystalline purity). This example shows one of the singularities of this unit is that counts with CF–based plants at different scales, from mL to L, which allow process development by QbD and process scale-up. Recently U6 NANBIOSIS, together with the Soft Scientific and Technical Service, was accredited with the ISO9001 certification for the standard quality control system. 

Congratulations Nora!

Read More

Antitumoral nanoparticles with multiple activities, a close reality.

Conventional chemotherapeutics used to fight cancer promote off-target damage in cells and organs that are not affected by the disease. This major drawback may be overcome with the development of tumor-targeted therapies, in which the antitumoral drugs are selectively delivered to tumoral cells using the efficient recognition between a receptor overexpressed in these cells and its ligand, without promoting off-side effects in the rest of the body.

The group of Nanobiotechnology (NBT) from the Institut de Biotecnologia i Biomedicina (IBB-UAB), led by Prof. Antonio Villaverde, develops a new concept of pharmaceuticals based on protein nanoparticles, in close collaboration with the group of Oncogenesis and Antitumor Drugs (GOA) from the Institut d’Investigació Biomèdica Sant Pau (IIB-Sant Pau) and the group of Nucleic Acids Chemistry from the Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), respectively lead by Prof. Ramon Mangues and Prof. Ramon Eritja. This research is conducted in the frame of the Director plan of CIBER-BBN, an excellence center from the Instituto de Salud Carlos III, to which all the groups belong, being assisted by three Nanbiosis ICTS units (U1, Protein Production Platform; U18, Nanotoxicology Unit; U29, Oligonucleotide Synthesis Platform).

The generated pharmaceuticals are selective for metastatic stem cells, responsible of cancer propagation, recurrence and bad prognosis, that overexpress in their surface the CXCR4 receptor, present in 23 distinct human neoplasias. Using a precise protein engineering, we generate multi-functional protein nanoparticles that remain in the bloodstream for long times and selectively enter and destroy metastatic stem cells, thus contributing to stop cancer progression. In the last years, we have employed two main strategies in the development of antitumoral protein nanoparticles. On one side, current chemotherapeutics already used in clinics in non-targeted approaches, such as Floxuridine or Monomethyl Auristatin E, are chemically linked to targeted protein nanoparticles that serve as drug delivery systems and comprise an inert scaffold, a polyhistidine tag and a targeting peptide that directs their effect to the CXCR4-tumor. On the other side, the inert scaffold of our protein nanoparticles is replaced by toxins, venoms or other death-inducer proteins that confer the protein nanoparticle an intrinsic antitumoral activity, without the need of delivering chemical drugs. Both strategies are protected by intellectual property rights.

Recently, we have explored the possibility of combining both strategies to generate intrinsically toxic nanoparticles loaded with conventional chemotherapeutics in a single pharmacological entity. This way, we seek to potentiate their antitumoral effect and face the appearance of resistances in the tumor. In this initial step, the concept proposed has been demonstrated as fully feasible, as stable nanoparticles that contain both the toxin and the loaded chemotherapeutics were generated. Although these novel nanomaterials do not improve toxic antitumoral activities in CXCR4+ tumor cell lines, this research has been crucial to identify the main bottleneck of the technology, that is achieving a precise control of the drug-binding site in order to maintain the antitumoral activity of targeted toxins, which must act at the same time as active principle and as anchoring site for chemical drugs.

This novel platform recruits in a single pharmacological entity different therapeutic actions and may open a broad investigation field in the design of antitumoral drugs. The current results of this project have been published in the scientific journal Acta Biomaterialia and presented in the international conference NALS2022 by Eric Voltà-Durán.

By Eric Voltà-Durán

Reference article – Design and engineering of tumor-targeted, dual-acting cytotoxic nanoparticles  https://doi.org/10.1016/j.actbio.2020.11.018

Read More