Carbon dioxide (CO2) is a known pollutant that affects the performance of humans in workplaces, schools and other indoor areas. Thus, the development of devices for sensing and monitoring CO2 levels is crucial for many fields such as food packaging and for human safety indoors. Researchers of NANBIOSIS U4. Biodeposition and Biodetection Unit, led by Prof. Laura M. Lechuga, are co-authors of the article “A CO2 optical sensor based on self-assembled metal–organic framework nanoparticles published by Journal of Materials Chemistry A., wich shows an optical CO2 sensor fabricated by integration of a metal–organic framework (MOF) onto bimodal optical waveguides.
The sensor showed a broad linear response, with limit of detections of 3130 ppm at room temperature and 774 ppm at 278 K; values that are below the threshold for CO2 monitoring in food packaging and for human safety indoors. Furthermore, it is robust, selective, fast and reusable, and can be stored under humid conditions with no loss in performance. The results should enable the development of fully integrated MOF-based sensors for in situ gas sensing and other in situ practical applications.
Article reference:
Blanca Chocarro-Ruiz, Javier Pérez-Carvajal, Civan Avci, Olalla Calvo-Lozano, Maria Isabel Alonso, Daniel Maspoch and Laura M. Lechuga. A CO2 optical sensor based on self-assembled metal–organic framework nanoparticles. J. Mater. Chem. A, 2018, Advance Article. DOI: 10.1039/C8TA02767F