Preclinical horizontal spectrometer Biospec 7T (Onsite&Remote) OUTSTANDING
7T Bruker BioSpec 70/30 USR MR system (Bruker BioSpin GmbH, Karlsruhe, Germany) equipped with a BGA12 mini-imaging gradient insert (maximum amplitude: 400 mT/m and slew rate: 5500 T/m/s). Capability for magnetic resonance imaging and spectroscopy of small animals (e.g. mouse, rat) and studies of model solutions (e.g. new contrast agents). Also capabilities for advanced imaging techniques such as diffusion and perfusion weighted images and fractional anisotropy. Coupled with anaesthetic equipment and vital signs monitoring for in vivo experiments.
Customer benefits
Noninvasive studies of anatomy and biochemical environment depending on the organ. Studies of physiological and pathological anatomy changes with a high resolution level. Magnetic resonance is not based on ionizing radiation and can be performed as many times as needed. Assessment of new therapeutic agents efficacy and novel contrast agents potential. T1, T2 and T2* maps measurement.
Target customer
Research groups or companies working with preclinical models, novel therapeutic or contrast agents, characterization of novel preclinical models based in cancer, inflammatory or neurological diseases.
References
- Zhang S, et al. Metal-Free Radical Dendrimers as MRI Contrast Agents for Glioblastoma Diagnosis: Ex Vivo and In Vivo Approaches. Biomacromolecules. 2022 Jul 11;23(7):2767-2777. doi: 10.1021/acs.biomac.2c00088. Epub 2022 Jun 24. PMID: 35749573; PMCID: PMC9277593.
- García-Pardo J, et al. Bioinspired Theranostic Coordination Polymer Nanoparticles for Intranasal Dopamine Replacement in Parkinson’s Disease. ACS Nano. 2021 May 25;15(5):8592-8609. doi: 10.1021/acsnano.1c00453. Epub 2021 Apr 22. PMID: 33885286; PMCID: PMC8558863.
- Wu S, et al. Anti-tumour immune response in GL261 glioblastoma generated by Temozolomide Immune-Enhancing Metronomic Schedule monitored with MRSI-based nosological images. NMR Biomed. 2020 Apr;33(4):e4229. doi: 10.1002/nbm.4229. Epub 2020 Jan 11. PMID: 31926117.
- Güell-Bosch J, et al. Progression of Alzheimer’s disease and effect of scFv-h3D6 immunotherapy in the 3xTg-AD mouse model: An in vivo longitudinal study using Magnetic Resonance Imaging and Spectroscopy. NMR Biomed. 2020 May;33(5):e4263. doi: 10.1002/nbm.4263. Epub 2020 Feb 17. PMID: 32067292.
- Suárez-García S, et al. Dual T1/ T2 Nanoscale Coordination Polymers as Novel Contrast Agents for MRI: A Preclinical Study for Brain Tumor. ACS Appl Mater Interfaces. 2018 Nov 14;10(45):38819-38832. doi: 10.1021/acsami.8b15594. Epub 2018 Nov 1. PMID: 30351897.
- Lope-Piedrafita, S. (2018). Diffusion Tensor Imaging (DTI). In: García Martín, M., López Larrubia, P. (eds) Preclinical MRI. Methods in Molecular Biology, vol 1718. Humana Press, New York, NY. doi: 10.1007/978-1-4939-7531-0_7
- Arias-Ramos N, et al. Metabolomics of Therapy Response in Preclinical Glioblastoma: A Multi-Slice MRSI-Based Volumetric Analysis for Noninvasive Assessment of Temozolomide Treatment. Metabolites. 2017 May 18;7(2):20. doi: 10.3390/metabo7020020. PMID: 28524099; PMCID: PMC5487991.
- Jiménez-Xarrié E, et al. Brain metabolic pattern analysis using a magnetic resonance spectra classification software in experimental stroke. BMC Neurosci. 2017 Jan 13;18(1):13. doi: 10.1186/s12868-016-0328-x. PMID: 28086802; PMCID: PMC5237280.