+34 620 10 75 37info@nanbiosis.com

Nanbiosis

A step forward for the design of multifunctional protein nanomaterials for cancer therapies

Researchers of NANBIOSIS Unit 1 and NANBIOSIS Unit 18, led by Prof Antoni Villaverde have published the article at the prestigious scintific magazine titled Collaborative membrane activity and receptor-dependent tumor cell targeting for precise nanoparticle delivery in CXCR4+ colorectal cancer

The researchers have shown that the combination of cell-penetrating and tumor cell-targeting peptides dramatically enhances precise tumor accumulation of protein-only nanoparticles intended for selective drug delivery, in mouse models of human colorectal cancer. This fact is a step forward for the rational design of multifunctional protein nanomaterials for improved cancer therapies.

Protein production has been partially performed by the  ICTS NANBIOSIS U1, Protein Production Platform and the nanoparticle size analysis by the U6  of NANBIOSIS Biomaterial Processing and Nanostructuring Unit. Biodistribution studies were performed by the U18 of the ICTS NANBIOSIS, Nanotoxicology Unit.

Article of reference:

Rita Sala, LauraSánchez-García, Naroa Serna, María Virtudes Céspedes, Isolda Casanova, Mònica Roldán, Alejandro Sánchez Chardig, Ugutz Unzueta, Esther Vázquez, Ramón Mangues, Antonio Villaverde. Collaborative membrane activity and receptor-dependent tumor cell targeting for precise nanoparticle delivery in CXCR4+ colorectal cancer. Acta Biomaterialia, 99, Pages 426-432. 2019,

Read More

Pilar Marco honored by the Spanish National Research Council (CSIC)

Maria Pilar Marco Colás has been honored by the Spanish National Research Council (CSIC) in appreciation for having complited 25 years of work at the CSIC, an intense period of 25 years at the service of Science, 11 of them as Scientific Director of Custom Antibody Service (CAbS), unit 2 of NANBIOSIS since its inclusion in the national ICTS map.

Read More

Why the poor biodistribution so far reached by tumor-targeted medicines?

Cell-selective targeting is expected to enhance effectiveness and minimize side effects of cytotoxic agents. Functionalization of drugs or drug nanoconjugates with specific cell ligands allows receptor-mediated selective cell delivery. However, it is unclear whether the incorporation of an efficient ligand into a drug vehicle is sufficient to ensure proper biodistribution upon systemic administration, and also at which extent biophysical properties of the vehicle may contribute to the accumulation in target tissues during active targeting. To approach this issue, structural robustness of self-assembling, protein-only nanoparticles targeted to the tumoral marker CXCR4 is compromised by reducing the number of histidine residues (from six to five) in a histidine-based architectonic tag. Thus, the structure of the resulting nanoparticles, but not of building blocks, is weakened. Upon intravenous injection in animal models of human CXCR4+ colorectal cancer, the administered material loses the ability to accumulate in tumor tissue, where it is only transiently found. It instead deposits in kidney and liver. Therefore, precise cell-targeted delivery requires not only the incorporation of a proper ligand that promotes receptor-mediated internalization, but also, unexpectedly, its maintenance of a stable multimeric nanostructure that ensures high ligand exposure and long residence time in tumor tissue.

Protein production has been partially performed by the  ICTS NANBIOSIS U1, Protein Production Platform and the nanoparticle size analysis by the U6  of NANBIOSIS Biomaterial Processing and Nanostructuring Unit. Biodistribution studies were performed by the U18 of the ICTS NANBIOSIS, Nanotoxicology Unit.

The concept presented by the authors of the present research might represent a convincing explanation of the poor biodistribution so far reached by tumor-targeted medicines, including antibody-drug conjugates. In addition to this, they offer a potential developmental roadmap for the improvement of these drugs, of high intrinsic therapeutic potential, to reach satisfactory efficiencies in the clinical context.

Hèctor López-Laguna, Rita Sala, Julieta M. Sánchez, Patricia Álamo, Ugutz Unzueta, Alejandro Sánchez-Chardi, Naroa Serna, Laura Sánchez-García, Eric Voltà-Durán, Ramón Mangues, Antonio Villaverde and Esther Vázquez. Nanostructure Empowers Active Tumor Targeting in Ligand-Based Molecular Delivery. Part. Part. Syst. Charact. 2019.

DOI: 10.1002/ppsc.201900304

Read More

Artificial inclusion bodies for controlled drug release

Researchers from NANBIOSIS-CIBER-BBN have developed a new type of protein biomaterial that allows a continuous release over time of therapeutic proteins when administered subcutaneously in laboratory animals.

These results are the result of the stable scientific collaboration between the researchers of NANBIOSIS Units 1 Protein Production Platform (PPP)and 18 Nanotoxicology Unit, led by Toni Villaverde and Ramón Mangues at the Institute of Biotechnology and Biomedicine of the Autonomous University of Barcelona (IBB-UAB) and the Institut About the Hospital de Sant Pau and has had the participation of the Institute of Biological and Technological Research of the National University of Córdoba-CONICET, in Argentina

 “These structures, of a few micrometers in diameter, contain functional proteins that are released in a manner similar to the release of human hormones in the endocrine system,” says Antonio Villaverde. Ramón Mangues explains that “the new biomaterial mimics a common bacterial product in biotechnological processes called ‘inclusion bodies’, of pharmacological interest, which in this artificial version offers a wide range of therapeutic possibilities in the field of oncology and in any other field clinic that requires sustained release over time.” Researchers have used common enzymes in biotechnology as a model and a nanostructured bacterial toxin that targets metastatic cells of human colorectal cancer, which has been tested in animal models. “In this way we have managed to generate both immobilized catalysts and a new long-acting anti-tumor drug,” said the researchers responsible for the research.

The developed artificial protein granules, which had previously been proposed as ‘nanopills’ (tablets of therapeutic material on a nanoscopic scale), mimic bacterial inclusion bodies and offer enormous clinical potential in the field of vaccinology and as release systems Drug controlled.

“We have seen that natural inclusion bodies, administered as medicines, can generate unwanted immune responses due to the inevitable contamination with bacterial materials,” the researchers comment. However, in the new work, the development of artificial inclusion bodies with secretion capacity “avoids many of the regulatory problems associated with the potential development of bacterial nanopills, and offers a cross platform for obtaining functional components in cosmetics and in clinic” they add.

This work points to artificial inclusion bodies as a new exploitable category of biomaterials for biotechnological applications with a more simple manufacturing and clinical applications.

Reference article:
Julieta M. Sánchez, Hèctor López ‐ Laguna, Patricia Álamo, Naroa Serna, Alejandro Sánchez ‐ Chardi, Verónica Nolan, Olivia Cano ‐ Garrido, Isolda Casanova, Ugutz Unzueta, Esther Vazquez, Ramon Mangues, Antonio Villaverde Artificial Inclusion Bodies for Clinical Development

https: //doi.org/10.1002/advs.201902420

Read More

A new method simple and efficient for the preparation of Oligonucleotide-protein conjugates

Oligonucleotide-protein conjugates have important applications in biomedicine. Four units of NANBIOSIS have collaborated to come across with more simple and efficient methods for the preparation of these conjugates.

In the publication of the research results, a new method is described in which a bifunctional linker is attached to thiol-oligonucleotide to generate a reactive intermediate that is used to link to the protein. Having similar conjugation efficacy compared with the classical method in which the bifunctional linker is attached first to the protein, this new approach produces significantly more active conjugates with higher batch to batch reproducibility. In a second approach, direct conjugation is proposed using oligonucleotides carrying carboxyl groups. These methodologies have been applied to prepare nanoconjugates of an engineered nanoparticle protein carrying a T22 peptide with affinity for the CXCR4 chemokine receptor and oligomers of the antiproliferative nucleotide 2′-deoxy-5-fluorouridine in a very efficient way. The protocols have potential uses for the functionalization of proteins, amino-containing polymers or amino-lipids in order to produce complex therapeutic nucleic acid delivery systems.

Protein production and DLS have been partially performed by the NANBIOSIS Units of CIBER-BBN  U1 Protein Production Platform (PPP) at IBB-UAB  and  U6 Biomaterial Processing and Nanostructuring Unit of CIBER-BBN and ICMAB-CSIC. Also, NANBIOSIS U18 of Nanotoxicology at the Hospital de la Santa Creu i Sant Pau has been used and the team of researcher counted with the NANBIOSIS expertise of U29 Oligonucleotide Synthesis Platform (OSP) at IQAC-CSIC

Article of reference:

Avino, Anna; Unzueta, Ugutz; Cespedes, Maria Virtudes; Casanova, Isolda; Vazquez, Esther; Villaverde, Antonio; Mangues, Ramon; Eritja, Ramon. Efficient bioactive oligonucleotide-protein conjugation for cell-targeted cancer therapy. CHEMISTRYOPEN 8, 3 (382-387), 2019

https://doi.org/10.1002/open.201900038
Read More

A CXCR4-targeted nanocarrier achieves highly selective tumor uptake in diffuse large B-cell lymphoma mouse models

Researchers of NANBIOSIS Unit 1 and NANBIOSIS Unit 18,  led by Ramón Mangues, have published the article titled CXCR4-targeted nanocarrier achieves highly selective tumor uptake in diffuse large B-cell lymphoma mouse models .

One-third of diffuse large B-cell lymphoma patients are refractory to initial treatment or relapse after rituximab plus cyclophosphamide, doxorubicin, vincristine and prednisone chemotherapy. In these patients, CXCR4 overexpression (CXCR4+) associates with lower overall and disease-free survival. Nanomedicine pursues active targeting to selectively deliver antitumor agents to cancer cells, a novel approach that promises to revolutionize therapy by dramatically increasing drug concentration in target tumor cells. In the study carried out at NANBIOSIS ICTS the resarchers intravenously administered a liganded protein nanocarrier (T22-GFP-H6) targeting CXCR4+ lymphoma cells in mouse models to assess its selectivity as a nanocarrier, by measuring its tissue biodistribution in cancer and normal cells. No previous protein-based nanocarrier has been described to specifically target lymphoma cells. T22-GFP-H6 achieved a highly selective tumor uptake in a CXCR4+ lymphoma subcutaneous model, as detected by fluorescent emission. We demonstrated that tumor uptake was CXCR4- dependent because pretreatment with AMD3100, a CXCR4 antagonist, significantly reduced tumor uptake. Moreover, in contrast to CXCR4+ subcutaneous models, CXCR4- tumors did not accumulate the nanocarrier. Most importantly, after intravenous injection in a disseminated model, the nanocarrier accumulated and internalized in all clinically relevant organs affected by lymphoma cells, with negligible distribution to unaffected tissues. Finally, the researchers obtained antitumor effect without toxicity in a CXCR4+ lymphoma model by T22-DITOX-H6 administration, a nanoparticle incorporating a toxin with the same structure as the nanocarrier. Hence, the use of T22-GFP-H6 nanocarrier could be a good strategy to load and deliver drugs or toxins to treat specifically CXCR4-mediated refractory or relapsed diffuse large B-cell lymphoma without systemic toxicity.

The bioluminescent follow-up of cancer cells and nanoparticle biodistribution and toxicity studies has been performed in the ICTS NANBIOSIS, using its  unit 18 of Nanotechnology of CIBER-BBN and Hospital Sant Pau The Protein production has been partially performed by the Protein Production Platform (PPP) Unit 1 of ICTS NANBIOSIS of CIBER-BBN and IBB-UAB.

Article of reference:

Aïda Falgàs, Victor Pallarès, Ugutz Unzueta, María Virtudes Céspedes, Irene Arroyo-Solera, María José Moreno, Alberto Gallardo, María Antonia Mangues, Jorge Sierra, Antonio Villaverde, Esther Vázquez, Ramon Mangues, and Isolda Casanova.  A CXCR4-targeted nanocarrier achieves highly selective tumor uptake in diffuse large B-cell lymphoma mouse models. Haematologica 2019

doi:10.3324/haematol.2018.211490

Read More

Inkjet printing and paper sensors to control different analytes with low cost technologies

‘I investigate, I am CSIC’ is a competition hold by The Spanish National Research Council (CSIC) for its doctoral students to disseminate their doctoral thesis. Through short videos of maximum duration of 3 minutes, predoctoral scientists explain their research and results in an informative language.

Miguel Zea, a member of the NANBIOSIS U8 Micro– Nano Technology Unit presents his video explaining how paper sensors can be manufactured to control different analytes with low cost technologies such as Inkjet Printing.

A jury composed of five experts in communication or scientific dissemination will choose eight videos taking into account the originality, impact, convenience and consistency of the video content. In addition, clarity will be valued when exposing the research work and the communicative capacity of the participant. The votes of the public through the YouTube channel of the Postgraduate Department will decide the selection of two other participants.

Read More

NANBIOSIS Unit 18 expands its equipments and capabilities

NANBIOSIS U18 Nanotoxicology Unit, led by Dr. Dr. Ramón Mangues, has recently added new equipment as a result of its participation in the project FICTS1420-20, selected by the MINECO for co-financing by the FEDER Program in ICTS 2014-2020.

The new equipment consists in a Autostainer System for the automation of manual staining methods used in Immunohistochemistry, pharmacodiagnostic, immunofluorescence and chromogenic development for in situ hybridization (AUTOSTAINER-TOX). Includes small equipment for deparaffinization, hydration and antigenic unmasking of paraffin-embedded tissue, complete kit for deparaffinization, hydration and antigenic unmasking of paraffin-embedded tissue. The equipment management software allows monitoring of staining status, request requests, and reporting and obtaining statistics.

European Regional Development Fund
Read More

“Tips and tricks to achieve good results at the bench”

The IBEC Core Facilities team, coordinating NANBIOSIS U7 Nanotechnology Unit has celebrated the 6th edition of the Workshop “Tips and tricks to achieve good results at the bench”.

This workshop is focused on fundamental basic aspects of working in a Chemistry/Biology laboratory: process of performing an experiment, from previous planning until the moment of leaving the bench.

The workshop was divided in two parts:

  • Introduction and overview to the Good Laboratory  Practices.
  • Highly interactive and practical daily lab situations with real equipment.

Upon completion of this workshop participants are able to understand the basics of good laboratory practices, plan an experiment taking into account all the steps necessary to perform it, use several basic equipment (scale, centrifuge, pHmeter, biosafety cabinet/sterile technique, handing liquids) and classify several types of hazardous waste.

Read More

Carlos Rodriguez-Abreu (NANBIOSIS U12) keynote speaker in OKINAWA COLLOIDS 2019


Carlos Rodriguez-Abreu, Scientific Director of NANBIOSIS U12 Nanostructured liquid characterization unit has been invited speaker at OKINAWA COLLOIDS 2019 conference in Okinawa, Japan on November 3 to 8, 2019 in the session Foams / Bubbles / Emulsions and Microemulsions.
Foams and emulsions stabilized by surfactants, amphiphilic polymers and solid particles are essential formulations for developing pharmaceuticals, cosmetics, foods and so on. Recently, many functional systems have been proposed including stimuli responsive materials, biocompatible materials, and environmental affinity materials. The topics of this session include a wide range of subjects: physical properties, phase behaviors and new functions of these systems.

Read More