+34 620 10 75 37info@nanbiosis.com

Nanbiosis

Pablo Laguna and Jordi Aguilo, Scientific Directors of the Units 27 and 8 of NANBIOSIS participate in the European program Remote Assessment of Disease and Relapse in Central Nervous System Disorders (RADAR-CNS)

RADAR-CNS is an important European research program supported by the Innovative Medicines Initiative (IMI) focused to develop new ways of monitoring patients affected by major depression, epilepsy and multiple sclerosis, with the use of wearable technology and smart mobile phones.

This program brings together experts from various disciplines in clinical research, engineering, computer and data analysis, as well as health services. RADAR-CN aims to improve symptoms and quality of life of patients and treatment of these and other chronic diseases. This program is jointly led by King’s College London and the pharmaceutical company Janssen and is funded by the Innovative Medicines Initiative (a public-private agreement EFPIA and the European Union). RADAR-CNS involves 24 organizations in Europe and US, including CIBER through its thematic areas of Mental Health (CIBERSAM) and Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)

“In recent years, the quality and quantity of data that can be collected with the wearable technology and smart phones has increased a lot. The information generated with this large amount of data will help to improve clinical care by providing greater detail of the patient’s condition and prognosis of its evolution. Moreover, it will be possible to detect whether a patient is beginning to have problems before there is clinical evidence of it” says Dr. Jordi Aguilo, scientific coordinator of the Unit 8 of NANBIOSIS.

This huge generate data sets, suitable to be stored and treated so to retrieve the relevant information hidden in the data, frequently require computing systems and information systems of high performance. The Unit 27 of NANBIOSIS will be the platform in which this analysis will be performed.

Pablo Laguna and Jordi Aguilo, Scientific Directors of the Units 27 and 8 of NANBIOSIS participate in the European program Remote Assessment
Read More

Elizabeth Engel, Scientific Coordinator of Unit 5 of NANBIOSIS: “Our research has opened the door to the regeneration of the nervous system by biomaterials”

The CIBER-BBN research group Biomaterials for Regenerative Therapies, which coordinates Unit 5 of NANBIOSIS develops various lines of research on biomaterials for regenerative therapies, especially focusing on the design and fabrication of scaffolds for tissue regeneration. They are working with polymers, hydrogels and compounds that can be manufactured using different techniques such as electrospinning to make 3D printing matrices or scaffolding. Applications are diverse, such as bone regeneration, neuronal, skin or cell therapy.

The group has recently presented the results of a project focused on the development of implants for the regeneration of nerve tissue with very promising results. The study opens the door to the possibility of regenerating the nervous system, since the capacity of cells to dedifferentiate is demonstrated and thus become capable of generating tissue cells. Moreover, these nanofibers scaffolds benefits vascularization (generation of new blood vessels) in the injured area, which promotes regeneration. The study has been shown in laboratory mouse and currently Dr. Alcantara (University of Barcelona), with whom the group is collaborating on this project since 6 years ago, is doing tests in rats to show that new neurons generated are functional.

The new prospects for medicine opened by this finding are very important: The first is the regenerative capacity of the brain. The second, biomaterials play a fundamental role in this regeneration and can open an important way for the development of biomedical devices that advance tissue regeneration using whose regulatory systems to market is much less complex than advanced therapies based cells and growth factors. 3D printing opens a new approach to fabricate this type of implants, as more porous structures can be printed to favor cell colonization and vascularization.

Elizabeth Engel, Scientific Coordinator of Unit 5 of NANBIOSIS: “Our research has opened the door to the regeneration of the nervous system by biomaterials”
Read More

“a-Galactosidase A Loaded Nanoliposomes with Enhanced Enzymatic Activity and Intracellular Penetration”

Unit 1 of NANBIOSIS, Protein Production Platform (PPP), Unit 3, Synthesis of Peptides, Unit 20, In Vivo Experimental Platform and Unit 6, Biomaterial Processing and Nanostructuring Unit, have jointly developed the research conducted in relation with a CO2-based methodology for the one-step production of protein-nanoliposome conjugates as bio-active nanomaterials with therapeutic interest. The results have been published in Advanced Healthcare Materials: http://www.ncbi.nlm.nih.gov/pubmed/26890358

“a-Galactosidase A Loaded Nanoliposomes with Enhanced Enzymatic Activity and Intracellular Penetration I. Cabrera, I. Abasolo, J. L. Corchero, E. Elizondo,  P. Rivera, E. Moreno, J. Faraudo, S. Sala, D. Bueno, E. González-Mira, M. Rivas, M. Melgarejo, D. Pulido, F. Albericio, M. Royo, A. Villaverde, M. F. García-Parajo, S. Schwartz Jr., N. Ventosa,*, and J. Veciana,*

Lysosomal storage disorders (LSD) are caused by lysosomal dysfunction usually as a consequence of deficiency of a single enzyme required for the metabolism of macromolecules such as lipids, glycoproteins and mucopolysaccharides. For instance, the lack of alpha-Galactosidase A (GLA) activity in Fabry disease patients causes the accumulation of glycosphingolipids in the vasculature leading to multiple organ pathology.

Enzyme replacement therapy (ERT), which is the most common treatment of LSD, exhibits several drawbacks mainly related to the instability and low efficacy of the exogenously administered therapeutic enzyme. In this work, the unprecedented increased enzymatic activity and intracellular penetration achieved by the association of a human recombinant GLA to nanoliposomes functionalized with RGD peptides is reported. Moreover, these new GLA loaded nanoliposomes lead to a higher efficacy in the reduction of the GLA substrate named globotriasylceramide (Gb3) in a cellular model of Fabry disease, than that achieved by the same concentration of the free enzyme. The preparation of these new liposomal formulations by DELOS-SUSP, based on the Depressurization of a CO2-Expanded Liquid Organic Solution, shows the great potential of this CO2-based methodology for the one-step production of protein-nanoliposome conjugates as bioactive nanomaterials with therapeutic interest.

“a-Galactosidase A Loaded Nanoliposomes with Enhanced Enzymatic Activity and Intracellular Penetration”
Read More

NANBIOSIS participated in the CTLS 2016 Conference.

Jesús Izco, Coordinator of NANBIOSIS participated in Core Technologies for Life Science 2016 that took place last 12 – 15 Jun at EMBL in Heidelberg, Germany, taking a unique opportunity to listen and discuss with colleagues and peers about challenges and solutions on all aspects of core facilities and infrastructures. Special mention requires the meeting with Patrick England coordinator of ARBRE, to treat NANBIOSIS participation in the V work package of Cost Action MOBIEU.

CTLS 2016 brought together not only scientists, technicians and managers, but also decision makers and opinion leaders involved in Core Technology facilities and resource laboratories in all fields of Life Science.

At the conference the following topics were discussed:
• New technologies and methodologies developed by and with Life Science core facilities
• Project & data management and quality control in and by Life Science core facilities
• Core facility administrative, human resource and financial management
• Teaching and training by and for Life Science core facilities
• Building networks, communities and lobbies involving Life Science core facilities.

NANBIOSIS participated in the CTLS 2016 Conference.
Read More

Research Excellence Award by the Spanish Royal Society of Chemistry to Ramón Martínez, Scientific Director of Unit 26 of NANBIOSIS

The Governing Board of the Spanish Royal Society of Chemistry (SRSQ) has agreed to grant its Research Excellence Award 2016 to Dr. Ramón Martínez Máñez, Scientific Director of Unit 26 of NANBIOSIS and Scientific Director of CIBER-BBN, in recognition of the quality and innovation of its research in the design of chrome-fluorogenic detection probes and the development of new delivery systems and their impact on biomedical applications.

Martinez Máñez is co-authored of more than 330 scientific publications in international journals. His scientific work has been cited on over 13,000 occasions. It is among the 15 most cited authors in the area of ​​Chemistry in Spain in recent years and currently has an index h of 56. He is currently Director of the Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) at the Politecnic University of Valencia. He has been coordinator of Project Evaluation Technology Area at the Generalitat Valenciana and member of the Committee of Experts for the Selection of Projects of the National Plan in 2010 and 2014 in the Thematic Area of ​​Materials. Currently, he is also coordinator of the PhD Program in Chemistry and a member of the Steering Committee of the Doctoral School of the UPV, Co-chairman of the magazine ChemistryOpen published by Wiley and member of the International Advisory Board of the Chemistry journal Asian. Chem. J. and ChemPlusChem, published by Wiley

 

Nanbiosis U26-Research Excellence Award by the Spanish Royal Society of Chemistry to Ramón Martínez, Scientific Director of Unit 26 of NANBIOSIS
Read More

Nanbiosis in the 2ª General Assambly of DRIVE project, Venice (16th-17th 2016)

Jesus Izco, Coordinator of NANBIOSIS and José Luis Pedraz, Scientific Director of Unit 10-Drug Formulation  of NANBIOSIS and NanoBioCel Group of CIBER-BBN, participated in the 2ª General Assambly of  DRIVE project, held in Venice, May 16th-17th 2016.

The second General Assembly of European project DRIVE “DIABETES-REVERSING-IMPLANTS FOR ENHANCED VIABILITY AND LONG TERM EFFICACY”, took place last 16 and 17 of May in San Servolo Island, Venice. Jesus Ciriza, from NanoBioCel  group, presented the work scheduled for this first year and the results obtained.

The DRIVE, a 4-year project to be carried out by 14 European partners, among which is CIBER-BBN, develops biomaterials and new surgical devices to improve transplantation and survival of insulin-producing pancreatic islet for the treatment of diabetes.

CIBER-BBN participates in the project thought Unit 10 of NANBIOSIS with the role of:

-Development of hydrogel formulations for β-Gel

-Developing unlimited future sources of insulin-producing β-cells

-Testing β-cell function in β-Gel using 3D in vitro tissue model.

Jesus Izco, Coordinator of NANBIOSIS and José Luis Pedraz, Scientific Director of Unit 10-Drug Formulation of NANBIOSIS and NanoBioCel Group of CIBER-BBN, participated in the 2ª General Assambly of DRIVE project, held in Venice, May 16th-17th 2016.
Read More

Last Friday, 27th May, the "Instituto de Investigación en Ingeniería de Aragón" held the "V Jornada de Jóvenes Investigadores" where phD students presented their works related to different areas: Industrial Technologies, Biomedical Engineering, Processes and Recycling and Information and Communications Technology.

Last Friday, 27th May, the “Instituto de Investigación en Ingeniería de Aragón” held the “V Jornada de Jóvenes Investigadores” where phD students presented their works related to different areas: Industrial Technologies, Biomedical Engineering, Processes and Recycling and Information and Communications Technology.

David Adolfo Sampedro Puente, member of the BSICoS, group coordinator of Unit 27 of NANBIOSIS, presented the work entitled “Unscented Kalman Filter for Unobservable Parameter Estimation in Heart Cell Signals”, supervised by Jesús Fernández Bes and Esther Pueyo Paules. This work shows a methodology to estimate unobservable parameters, such as the number of the different ion channel typologies located in the cardiomyocyte membrane, from action potential (AP) signals. This methodology was validated using synthetic AP signals simulated by stochastic computational cell models. In future, this methodology will be used to real signals, recorded in human cardiomyocytes, to help to the study of the AP temporal variability characterization.

Nanbiosis U27-Unscented Kalman Filter for Unobservable Parameter Estimation in Heart Cell Signals by David Sampedro
Read More

A new surface for bone implants that promotes regeneration and reduces the risk of infections in which.

The Phytech project (funded by the Spanish Government through the Call INNPACTO) has recently finished with the participation of CIBER-BBN, through Unit 16 of NANBIOSIS, the University of the Balearic Islands and the companies NuMat Biomedical and Sanifit).

Unit 16 of NANBIOSIS – Surface Characterization and Calorimetry, coordinated by Dr. M. Luisa Gonzalez, has conducted tests of surface composition by surface characterization techniques (XPS and ToF-SIMS) as well as the analysis microbial response of the raised surfaces in this development

The results of this project have been published in the journal Applied Materials & Interfaces of the American Chemical Society.

For further information clic here

U16. Ellipsometer
Read More

Cationic nioplexes in supramolecular hydrogels as hybrid materials to deliver nucleic acids

Jose Luis Pedraz, Scientific Director of Unit 10 of NANBIOSIS Drug Formulation unit and Ramon Eritja Scientific Director of Unit U29 of NANBIOSIS Oligonucleotide Synthesis Platform (OSP) (CIBER-BBN) have participated in the entrapment of cationic nioplexes in supramolecular hydrogels and the use of these materials for transfecting cells.

This work is focused on entrapping cationic nioplexes within supramolecular hydrogels based on N-protected phenylalanine. To modulate the supramolecular hydrogel diffusion properties, hydrogels were easily tuned with ĸ-carrageenan (≤ 1%). These materials were fully characterized using rheology. The niosomal liberation in solution through hydrogels was monitored by fluorescence and this release was controlled by diffusion mechanisms. The lack of toxicity of these materials allowed these materials to be used in cell culture. Preliminary transfection results confirmed the suitability of entrapping niosomal formulations in supramolecular hydrogels and the potential opening up of alternative strategies in therapy.

This study was published in RSC Advances:

S. Grijalvo, G. Puras, J. Zárate, R. Pons, J.L. Pedraz, R. Eritja, D. Díaz. “Nioplexes encapsulated in supramolecular hybrid biohydrogels as versatile delivery platforms for nucleic acids” 2016, 6, 39688-39699. DOI: 10.1039/C6RA01005A

Nanbiosis_U10_Cationic nioplexes in supramolecular hydrogels as hybrid materials to deliver nucleic acids
Read More

Nanobiotechnology for Diagnostics Group awarded with TECNIO grant to encourage Technology Transfer

The Nanobiotechnology for Diagnostics Group (Nb4D), the host group for the Custom Antibody Service of Unit 2 of NANBIOSIS was recently awarded with grant that ACCIÓ provides to groups who are seeking to be accredited with the TECNIO seal. The aim is to help define and boost their action plans for technology transfer.

These grants are destined at financing for 3 years the integration of these groups in the UAB-CEI sphere of the TECNIO network. The group will use this finance for activities related to the execution during the first year of a growth plan to increase their technology transfer to the private sector.

The TECNIO seal is granted by the Government of Catalonia, through ACCIÓ (Agency for Business Competitiveness) to identify the developers and facilitators of differential technologies in Catalonia.

Nanbiosis_U2_Nanobiotechnology for Diagnostics Group awarded with TECNIO grant to encourage Technology Transfer
Read More