+34 620 10 75 37info@nanbiosis.com

Nanbiosis

U25-S06. Dynamic nuclear polarizer HyperSense® (Onsite&Remote) OUTSTANDING

Dynamic nuclear polarizer HyperSense® (Onsite&Remote) OUTSTANDING

Sheltered magnet of 3.35T. Integrated microwave source Elva-1™ VCOM-10, frequency ≈ 94 GHz. BOC Edwards™ E2M80 Series Vacuum Pump. Sample dissolution and automatic transfer system from polarizer to Bruker 600 MHz spectrometer

Customer benefits

DNP significantly boosts the sensitivity of NMR experiments, enabling the detection of nuclei present at low concentrations or in low abundance compared to conventional NMR techniques. It can be used in metabolomics studies to analyze metabolic pathways, identify metabolites, and investigate metabolic fluxes in biological samples such as tissues, cells, and biofluids. Provides real-time monitoring of chemical reactions and kinetics, providing valuable information about reaction mechanisms, intermediate species, and reaction rates.

Target customer

Researchers or companies with needs to enhance sensitivity and elucidate metabolic pathways or changes occurred during therapy, for example, changes in the glycolytic metabolism within tumor cells. Polarized samples can be used for further in vitro or in vivo experiments depending on the information needed.

References

  • Monteagudo E, Virgili A, Parella T, Pérez-Trujillo M. Chiral Recognition by Dissolution DNP NMR Spectroscopy of 13C-Labeled dl-Methionine. Anal Chem. 2017 May 2;89(9):4939-4944. doi: 10.1021/acs.analchem.7b00156. Epub 2017 Apr 21. PMID: 28394124.
  • Chavarria L, Romero-Giménez J, Monteagudo E, Lope-Piedrafita S, Cordoba J. Real-time assessment of ¹³C metabolism reveals an early lactate increase in the brain of rats with acute liver failure. NMR Biomed. 2015 Jan;28(1):17-23. doi: 10.1002/nbm.3226. Epub 2014 Oct 10. PMID: 25303736.
Read More

U25-S07. Focused Microwave Fixation System (Onsite&Remote) OUTSTANDING

Focused Microwave Fixation System (Onsite&Remote) OUTSTANDING

Muromachi Focused Microwave Fixation System 5KW-6402C. The system is configured to mouse (TAW-174A Applicator Head for WJM-28 Mouse Holder). Capable of fast euthanization (miliseconds range) of mice, and also to halt postmortem metabolism in cell suspensions and biopsy samples, allowing further examination without the need of low temperatures to avoid postmortem changes.

Customer benefits

Halting postmortem metabolism may allow for different long-term studies such as 13C NMR (natural abundance), 2D NMR acquisitions, and also to use physiological temperatures without any postmortem deterioration. Still, the halted sample is still valid for histopathological examination if needed.

Target customer

Customers that work with systems subjected to fast postmortem changes which could make detailed studies challenging without the use of extreme, non-physiological conditions.

References

  • Delgado-Goñi T, Campo S, Martín-Sitjar J, Cabañas ME, San Segundo B, Arús C. Assessment of a 1H high-resolution magic angle spinning NMR spectroscopy procedure for free sugars quantification in intact plant tissue. Planta. 2013 Aug;238(2):397-413. doi: 10.1007/s00425-013-1924-y. Epub 2013 Jul 4. PMID: 23824526.
  • Davila M, Candiota AP, Pumarola M, Arus C. Minimization of spectral pattern changes during HRMAS experiments at 37 degrees celsius by prior focused microwave irradiation. MAGMA. 2012 Oct;25(5):401-10. doi: 10.1007/s10334-012-0303-1. PMID: 22286777.
Read More

U25-S08. NMR consultancy for processing and interpreting data (Onsite&Remote)

NMR consultancy for processing and interpreting data (Onsite&Remote)

Possibility of requesting expert advice and guidance while processing and interpreting MR data, especially at the preclinical and clinical levels.

Customer benefits

Customers not willing to install and proceed with a learning curve for using specific software can get expert advice and guidance on metabolite significance, interpretation and meaning.

Target customer

Researchers or companies dealing with MR datasets.

References

El-Abtah ME, Wenke MR, Talati P, Fu M, Kim D, Weerasekera A, He J, Vaynrub A, Vangel M, Rapalino O, Andronesi O, Arrillaga-Romany I, Forst DA, Yen YF, Rosen B, Batchelor TT, Gonzalez RG, Dietrich J, Gerstner ER, Ratai EM. Myo-Inositol Levels Measured with MR Spectroscopy Can Help Predict Failure of Antiangiogenic Treatment in Recurrent Glioblastoma. Radiology. 2022 Feb;302(2):410-418. doi: 10.1148/radiol.2021210826. Epub 2021 Nov 9. PMID: 34751617; PMCID: PMC8805659.

Read More

U25-S09. Access to specific software and database (Remote) OUTSTANDING

Access to specific software and database (Remote) OUTSTANDING

Possibility of access to specific software developed in-house (postprocessing of MR spectroscopy data, conversion of spectroscopic data to canonical format, software for automated classification of MR spectroscopic data, decision support systems), provided disclaimer and agreement are signed. Databases with patient MR imaging and spectroscopic data, as well as epidemiological data from two multicentric european projects.

Customer benefits

Curated databases with a high quality level data for further studies. Software no currently available in public repositories. Interaction with researchers specialized in MR data.

Target customer

Customers willing to apply automated classification to their MR spectroscopic data, or willing to apply their methods to different clinically sound datasets.

References

  • Ungan G, et al. Using Single-Voxel Magnetic Resonance Spectroscopy Data Acquired at 1.5T to Classify Multivoxel Data at 3T: A Proof-of-Concept Study. Cancers (Basel). 2023 Jul 21;15(14):3709. doi: 10.3390/cancers15143709. PMID: 37509372; PMCID: PMC10377805.
  • Hernández-Villegas Y, et al. Extraction of artefactual MRS patterns from a large database using non-negative matrix factorization. NMR Biomed. 2022 Apr;35(4):e4193. doi: 10.1002/nbm.4193. Epub 2019 Dec 2. PMID: 31793715.
  • Hellström J, et al. Evaluation of the INTERPRET decision-support system: can it improve the diagnostic value of magnetic resonance spectroscopy of the brain? Neuroradiology. 2019 Jan;61(1):43-53. doi: 10.1007/s00234-018-2129-7. Epub 2018 Nov 15. PMID: 30443796; PMCID: PMC6336758.
  • Julià-Sapé M, et al. Classification of brain tumours from MR spectra: the INTERPRET collaboration and its outcomes. NMR Biomed. 2016 Mar;29(3):371. doi: 10.1002/nbm.3483. Epub 2015 Dec 22. Erratum for: NMR Biomed. 2015 Dec;28(12):1772-87. Tate, Rosemary A [Corrected to Tate, A Rosemary]. PMID: 26915795.
  • Mocioiu V, et al. From raw data to data-analysis for magnetic resonance spectroscopy–the missing link: jMRUI2XML. BMC Bioinformatics. 2015 Nov 9;16:378. doi: 10.1186/s12859-015-0796-5. PMID: 26552737; PMCID: PMC4640235.
  • Ortega-Martorell S, et al. SpectraClassifier 1.0: a user friendly, automated MRS-based classifier-development system. BMC Bioinformatics. 2010 Feb 24;11:106. doi: 10.1186/1471-2105-11-106. PMID: 20181285; PMCID: PMC2846905.
  • Pérez-Ruiz A, et al. The INTERPRET Decision-Support System version 3.0 for evaluation of Magnetic Resonance Spectroscopy data from human brain tumours and other abnormal brain masses. BMC Bioinformatics. 2010 Nov 29;11:581. doi: 10.1186/1471-2105-11-581. PMID: 21114820; PMCID: PMC3004884.
  • Luts J, et al. A combined MRI and MRSI based multiclass system for brain tumour recognition using LS-SVMs with class probabilities and feature selection. Artif Intell Med. 2007 Jun;40(2):87-102. doi: 10.1016/j.artmed.2007.02.002. Epub 2007 Apr 26. PMID: 17466495.
  • Julià-Sapé M, et al. A multi-centre, web-accessible and quality control-checked database of in vivo MR spectra of brain tumour patients. MAGMA. 2006 Feb;19(1):22-33. doi: 10.1007/s10334-005-0023-x. Epub 2006 Feb 14. PMID: 16477436.

Read More

U25-E01. Two AVANCE 250 MH z

Two AVANCE 250 MH z (5.8 T) spectrometers, one of them with an autosampler.

Read More

U25-E02. An AVANCE 360 MH z

An AVANCE 360 MH z (8.4 T) spectrometer for the highresolution
analysis of samples in liquid state. Suitable for the structural determination of chemical molecules.

Read More

U25-E03. AVII 400 MH z

AVII 400 MH z (9.4 T) spectrometer – with a narrow bore, equipped with a solid state accessory for working under Cross Polarization Magic-Angle-Spinning (CPMAS) conditions with materials under solid conditions. It has rotors with a variable capacity between 12-40 μl, 4 mm-diameter and a spinning rate up to 15000 Hz.

Read More

U25-E04. AVIII 400 MH z

AVIII 400 MH z (9.4 T) spectrometer – with a narrow bore, equipped with a High Resolution Magic Angle Spinning (HRMAS) probe for analyzing semi-solid/semiliquid samples such as biopsies, cell extracts or biofluids. It has rotors with a variable capacity between 12-40 μl, 4 mm-diameter and a spinning rate up to 15000 Hz.

Read More

U25-E05. AVANCE 500 MH z

AVANCE 500 MH z (11.7T) spectrometer with a 5 mm TCI cryoprobe with a high sensitivity increase (4X). It is connected to a high pressure liquid chromatography (HPLC), mass spectrometry (MS) and Diode Array (DAD) detectors. It has the possibility of using solid-phase extraction (SPE). It is unique for metabolomic studies and analysis of samples with limited mass and for the characterization of complex samples with compounds at a low concentration (μg), for biomedical and pharmacological applications, and analysis of natural products

Read More

U25-E06. AVIII 600 MH z

AVIII 600 MH z (14T) spectrometer for high-resolution spectroscopy studies. It is equipped with a Triple Broad Band Inverse (TBI) detection-type probe which makes it suitable for proteomic and metabolomic studies, allowing the analysis of complex mixtures of very different origins (urine, plasma, serum, extracts, biopsies, etc).

Read More